 Major Discipline Specific course MJDSC -1	Basic Chemistry- III	SC23MJDSCCHE401	4	50	50	2.30	100
Major Discipline Specific course MJDSC-II	Basic Chemistry- IV	SC23MJDSCCHE401A	4	50	50	2.30	100
Major Discipline Specific course MJDSC -1II Practicals	PMJDC Practical -I & II Lab Group A & Group B	SC23PMJDSCCHE401	4	50	50	2.30	100
Minor Discipline Specific course MIDSC	To be Selected Simplified chemistry -I	SC23MIDSCCHE402	2	25	25	2.00	20
Minor Discipline Specific course MIDSC Practicals	Practical's for simplified chemistry I	SC23PMIDSCCHE402	2	25	25	2.00	50
Ability Enhancement Courses AEC	To be Selected (From languages)	SC23AECCHE404	2	25	25	2.00	20
Value Added course VAC	To be Selected (VAC Bhartiya Science & Technology)	SC23VACCHE405	2	25	25	2.00	50
 Skill Enhancement Course SEC	To be Selected SEC-1 Green chemistry or SEC-2 Ceramics	SC23SECCHE406/ SC23SECCHE406A	2	25	25	2.00	50
	Total Credits of Semester - IV		22	275	275		250

Course Name: B. Sc. Chemistry Semester: IV
PROGRAM CODE: SCIUG102

COURSE CODE : SC23MJDSCCHE401

Type of course: Major Discipline Specific course

Name of course: Basic chemistry III Total Marks : 100

Effective from June 2023 Under NEP 2020

Total Credits: 04	Teaching Hours per Week:	04	Theory	External 50 Marks
	Teaching Hours per Semeste	r: 60		Internal 50 Marks

Course Objectives:

- 1. To have knowledge on noble gases and their uses..
- 2. To understand chemistry of aminoacids and peptides and their application.
- 3. To study about polycyclic aromatic hydrocarbons and their relevant reactions.
- 4. To know about the role of ionic equilibrium in electrochemistry.

- 1.Students will have a firm foundation in the fundamentals and application of current chemical and scientific theories including those in Inorganic, Organic and Physical Chemistries.
- 2.Students will appreciate the central role of chemistry in our society and use this as a basis for ethical behavior in issues facing chemists including an understanding of safe handling of chemicals, environmental issues and key issues facing our society in energy, health and medicine.
- 3.Students will be able to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.
- 4. Students will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- 5. To know about the conductometric titrations and calculations for estimation of components in mixtures.

Unit	Topic	Credit	Hr
1	Chemistry of Noble gases.	1	15
	Introduction		
	Discovery of Noble gases: Occurrence, Isolation of Non- radioactive		
	Of Noble gases.		
	Electronic configuration of Noble gases.		
	Compound of Noble gases.		
	Non real compounds prepared by different methods.		
	True compounds: XeF ₂ , XeF ₄ , XeF ₆ , XeOF ₂ , XeO ₂ F ₂ , XeOF ₄ , XeO ₃ ,		
	XeO ₄ .		
2	Amino Acid & Peptides.	1	15
	Amino Acid		
	Introduction, Classification and nomenclature, Acid-Base Behavior		
	(zwitterion) and Isoelectric point		
	Synthesis of amino acids (GabrielPhthalimide, Straker, Fisher-		
	melonic ester), Chemical properties and reaction of amino acids		
	Peptides		
	Structure and nomenclature of peptide, Structure determination of		
	peptide, End group analysis (C-terminal & N-terminal)		
	Synthesis of Peptide (Bergmann, Azide, Shehan)		
3	Poly Cyclic Aromatic Hydro Carbon.	1	15
	Introduction, Nomenclatureof naphthalene, Anthracene,		
	Phenanthrene and its derivatives		
	Synthesis of Naphthalene Anthracene, Phenanthrene		
	Chemical Reactions (oxidation, reduction and electrophilic,		
	substitution reaction (ESR)) of naphthalene, Anthracene,		
	Phenanthrene		
	Carcinogenic hydrocarbon		
4.	Ionic Equilibrium	1	15
	Introduction , Electrolysis, Ionic equilibrium, Resistance,		

Conductance, Specific Conductance, equivalent conductance, Molar conductance and equivalent conductance at infinite dilution.

Transport number: Determination of transport number (i) Hittorf's Method (ii) Moving Boundary Method.

Relevant Numericals.

Types of Condctometric titration

Acid Base titration: Strong acid Vs Strong base, Strong acid Vs Weak base, Weak acid Vs Strong base, Weak acid Vs Weak base, Strong acid + Weak acid Vs Strong base.

Hydrolysis of salt: Classification of salt, Derive pH equation for hydrolysis of strong acid & weak base Salt, Derive pH equation for hydrolysis of weak acid & strong base salt, Derive pH equation for hydrolysis of weak acid & weak base salt.

Numericals.

Books Recommended:

- ➤ Inorganic Chemistry
- 1. Inorganic chemistry, Catherine E. house croft, 5 th edition, Pearson, 2018.
- 2. Concise Inorganic Chemistry J.D.Lee, 4th edition, ELBS publication.
- 3. Inorganic chemistry, Manas chandra, Oxford Pubishers, 1998.
- ➤ Organic Chemistry
- 1. Organic Chemistry by Morrison and Boyd. 4th ed. Pearson Education- 2003
- 2. Organic Chemistry by pine, Hendriction, Cram and Hammond 4th ed. By P.S.Kalsi.
- 3. Advance Organic Chemistry by Jerry March.
- 4. Advance Organic Chemistry by ArunBahal and B.S.Bahal.
- 5. Organic Chemistry Vol. I & II by S.M.Mukherji, S.P.Sing, R.P.Kapoor.
- 6. Reaction mechanism and Reagents in Organic Chemistry by GurdeepR.Chatwal 4th ed. Himalaya public House.
- 7. Text book of Organic Chemistry by ArunBahal, B.S.Bhal, S.Chand.
- 8. Organic Spectroscopy by P.S.Kalsi.
- 9. Organic Chemistry by I.R.Finar.
- ➤ Physical Chemistry

- 1. Advance Physical Chemistry by Gurdeep Raj
- 2. Physical Chemistry (Question and Answers) by R.N.Madan, G.D.Tully, S.Chand.
- 3. Principal of Physical Chemistry by Puri, Sharma, Pathania.
- 4. Chemical Thermodynamics by R.P.Rastogy and R.R.Misra.
- 5. Essentials of Physical Chemistry by B.S.Bahal, ArunBahal, G.D.Tully.
- 6. Physical Chemistry by P.W.Atkins, 5th ed., Oxferd, 1994, 7th ed., 2002
- 7. Physical Chemistry by R.A.Alberty and R.J.Silbey, John Wiley, 1995.
- 8. Physical Chemistry by G.H.Barrow, 5th ed., Mac Graw Hill, 1998, 6th ed.
- 9. Physical Chemistry by W.J.Moore, 4th ed., Orient Longmans, 1969.

Course Name: B. Sc. Chemistry Semester: IV PROGRAM CODE: SCIUG102

COURSE CODE : SC23MJDSCCHE401A

Type of course: Major Discipline Specific course

Name of course: Basic Chemistry IV Total Marks: 100

Effective from June 2023 Under NEP 2020

Total Credits: 04	Teaching Hours per Week: 04	1	Theory	External 50 Marks
	Teaching Hours per Semester: 6)		Internal 50 Marks

Course Objectives:

- 1. To understand the core concepts of inner transition metal complexes.
- 2. To understand acid base organic chemistry i.e. resonance, inductive effect etc. and their explanations.
- 3. To study about the phase rule and types of reactionsphase reactions.
- 4. To know about the colorimetery and spectrophotometery for various applications.

- 1.Students will have a firm foundation in the fundamentals and application of current chemical and scientific theories including those in Analytical, Inorganic, Organic and Physical Chemistries.
- 2. Students will appreciate the central role of chemistry in our society and use this as a basis for ethical behavior in issues facing chemists including an understanding of safe handling of chemicals, environmental issues and key issues facing our society in energy, health and medicine.
- 3.Students will be able to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.
- 4. Students will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- 5. To know about the analytical toolslike spectrophotometery for industrial practical applications.

Unit	Topic	Credit	Hr
1	F Block Elements	1	15
	[A] Lanthanides:		
	Inner transition elements, position in the Periodic Table,		
	Lanthanides: General Characteristics, (Electronic Configuration,		
	Oxidation States, Oxidation Potential, Colour, MegneticProperies,		
	Isotopes, Chemical Reactivity, Formation of Complex, Ionization		
	Potential), Lanthanide Contraction, Effect of Actinide Contraction,		
	Occurrence and Extraction of Lanthanides, Separation of Lanthanide		
	elements, (Ion exchange method and Solvent Extraction Method.)		
	[B] Actinides:		
	General Characteristics (Electronic Configuration, Oxidation States,		
	Atomic and Ionic radii, Actinide Contraction, Formation of		
	Coloured salts, Formation of complex, Magnetic Properties).		
	Occurrence and Isolation of Uranium, Use of Uranium,		
	Preparation of Neptunium, Plutonium, Americium, Curium from		
	Uranium.		
2	Acid-Base Properties.	1	15
	Introduction: Proton acids – Bases and Lewis acids- Bases, Scale of		
	acidity – Basicity.		
	Factors effecting on acidity and basicity of compounds.		
	Resonance effect (Drawing resonance structures and the conditions for		
	resonance).		
	Inductive effect, Hybridization Steric effects, Effects of hydrogen		
	bonding		
3	Phase rule.	1	15
	Gibbs Phase rule- statement and meaning of terms- phase, component,		
	degree of freedom, Derivation of phase rule, Advantages and		
	limitations of phase rule,		
	One component system: water system, Sulphur system,		
	Reduced phase rule of condensed system,		

	Two component system: Pb - Ag system, Zn - Mg system, KI - water		
	system, Dehydration of CuSO ₄ ·5H ₂ O, Steam distillation		
	Numericals.		
4.	Calorimetry & Spectrophotometry.	1	15
	Principle of colorimetry,		
	Laws of Light: Groths - Drappers's Law, Lambert - Beer's Law.		
	Various terms: Absorptivity, Optical density, Molar absorptivity,		
	%transmission, - Relation between absorptivity and % transmission,		
	deviation of Lambert - Beer's law.		
	Applications of Lambert - Beer's law,		
	Problem solving in colorimetry: Standard series method and Dilute		
	method		
	Basic differences in colorimer and spectrophotometer .Description of		
	single beam and double beam spectrophotometry (Source for		
	irradiation, Monochrometer,		
	Wave selector, cuvette or sample holding vessel, detectors Working		
	with spectrophotometer, probable error in working with		
	spectrophotometer, study and evaluation of two components in the		
	mixture.		
	Numericals.		

- ➤ Inorganic Chemistry
- 1. Inorganic chemistry, Catherine E. house croft, 5 th edition, Pearson, 2018.
- 2. Concise Inorganic Chemistry J.D.Lee, 4th edition, ELBS publication.
- 3. Inorganic chemistry, Manas chandra, Oxford Pubishers, 1998.
- ➤ Organic Chemistry
- 1. Organic Chemistry by Morrison and Boyd. 4th ed. Pearson Education- 2003
- 2. Organic Chemistry by pine, Hendriction, Cram and Hammond 4th ed. By P.S.Kalsi.
- 3. Advance Organic Chemistry by Jerry March.
- 4. Advance Organic Chemistry by ArunBahal and B.S.Bahal.
- 5. Organic Chemistry Vol. I & II by S.M.Mukherji, S.P.Sing, R.P.Kapoor.
- 6. Reaction mechanism and Reagents in Organic Chemistry by GurdeepR.Chatwal 4th

- ed. Himalaya public House.
- 7. Text book of Organic Chemistry by ArunBahal, B.S.Bhal, S.Chand.
- 8. Organic Spectroscopy by P.S.Kalsi.
- 9. Organic Chemistry by I.R.Finar.
- ➤ Physical Chemistry
- 1. Advance Physical Chemistry by Gurdeep Raj
- 2. Physical Chemistry (Question and Answers) by R.N.Madan, G.D.Tully, S.Chand.
- 3. Principal of Physical Chemistry by Puri, Sharma, Pathania.
- 4. Chemical Thermodynamics by R.P.Rastogy and R.R.Misra.
- 5. Essentials of Physical Chemistry by B.S.Bahal, ArunBahal, G.D.Tully.
- 6. Physical Chemistry by P.W.Atkins, 5th ed., Oxferd, 1994, 7th ed., 2002
- 7. Physical Chemistry by R.A.Alberty and R.J.Silbey, John Wiley, 1995.
- 8. Physical Chemistry by G.H.Barrow, 5th ed., Mac Graw Hill, 1998, 6th ed.
- 9. Physical Chemistry by W.J.Moore, 4th ed., Orient Longmans, 1969.

Analytical chemistry

- 1. Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by GH Jeffery and others) 5th Ed. The English Language Book Society of Longman
- 2. Willard, Hobert H. et. al: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.
- 3. Christian, Gary D; Analytical Chemistry, 6th Ed. New York- John Willy, 2004.
- 4. Harris, Daniel C, Quantitative Chemical Analysis, 3 rd Edition, W.H. Freeman and Company, New York, 2001.
- 5. Khopkar, S.M. Basic Concepts of Analytical Chemistry New Age, International Publisher, 2009.
- 6. Koogs, West and Holler, Fundamentals of Analytical Chemistry, 6th Edition, Sauders College Publishing, New York. 1991.

Further Reading:

- 1. http://chemcollective.org/vlabs
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. https://wp.labster.com/chemistry-virtual-labs/
- 4. https://www.youtube.com/watch?v=O nyEi hZzg

Program Name: B. Sc. Chemistry Semester: IV

PROGRAM CODE: SCIUG102

COURSE CODE : SC23PMJDSCCHE401

Type of Course: Practicals Major Discipline Specific Course PMJDSC

Name of Course: Practical's for Basic chemistry II

Total Marks : 100

Effective from June 2023 Under NEP 2020

GROUP A

Total Credits: 02	Teaching Hours per Week: 04	Practicals	External 25 Marks
	Lab Teaching Hours per semester:60		Internal 25 Marks
Minimum	Number Practicals to be Performed: 12		
GROUP B			
Total Credits: 02	Teaching Hours per Week: 04	Practicals	External 25 Marks
	Lab Teaching Hours per semester:60		Internal 25 Marks
Minimum	Number Practicals to be Performed: 08		

Course Objectives:

- 1. To identify the organic components.
- 2. Preparation of solutions and for various estimations.

- 1. Students will gain a comprehensive knowledge and skills in organic separations for carrying out reactions.
- 2. To understand basic methods to identify the compounds on the basis complexometric titrations.

Sr.No.	List of Practicals	Credit	Hr
GROUP A	Organic chemistry Separation of mixtures (any 10) Mixture should have two compounds and the compounds should be water insoluble.	2	60

GROUP	Inorganic Quantitative analysis. (Any 10)	2	60
В	1. Estimation of Ca by complexometric titration.		
	2. Estimation of Mg by complexometric titration.		
	3. Estimation of Cu by EDTA complexometric titration		
	4. Estimation of Cu by Iodometrical titration		
	5. To estimate ferrous (Fe ⁺²) and ferric (Fe ⁺³) ions given in the		
	mixture.		
	6.To determine the strength of Ferrous ammonium sulphate by		
	$K_2Cr_2O_{7.}$		
	7. To determine the amount of Zn by EDTA Method.		
	8. To determine the amount of Ni by EDTA Method.		
	9. Estimation of Glucose/Aniline/Phenol		
	10. To determine the amount of Aniline by Brominating Method.		
	11. To determine the amount of Phenol by Brominating Method.		
	12. To determine the amount of Glucose by oxidation Method		
	1	1	í

- 1. Practical Chemistry: For B.Sc. I, II And III Year Students of All India Universities By Pandey O.P. & et Al. publisher S. Chand's, Paperback December 2010.
- 2. Basic Principles of Practical Chemistry,
- by V. Venkateswaran (Author) publisher S. Chand's, Paperback 1 January 2012
- 3. Chemistry In Laboratory-B.Sc.-Sem-I-Vi-Hons.
- By Dr.Subhojit Ghosh (Author), Dr.Madhushree Das Sharma (Author), publisher CBCS, Paperback 1 January 2019.

Further Reading:

- 1. Practical Chemistry, By Sonia Ratnani (Author), Swati Agrawal (Author), Sujeet Kumar Mishra (Author) publisger Mc Graw Hill, 1st Edition Paperback 16 September 2020.
- 2. B.Sc. Practical Chemistry First Year By Paperback, Dr. M.M.N. Tandon, Publisher: Shiva Lal Agarwal & Company, 2020.

Course Name: B. Sc. Chemistry Semester: IV

PROGRAM CODE: SCIUG102

COURSE CODE : SC23MIDSCCHE402

Type of course : Minor Elective course MIDSC

Name of course: Simplified chemistry I Total Marks: 50

Effective from June 2023 Under NEP 2020

Total Credits: 02	Teaching Hours per Week: 02	Theory	External 25 Marks
	Teaching Hours per Semester: 30		Internal 25 Marks

Course Objectives:

- 1. To understand the core concepts of electrochemistry.
- 2. To understand role of electrodes and their applications.

- 1. Students will have a firm foundation in the fundamentals and application of electro chemistry and scientific theories applicable to Analytical, Inorganic, Organic and Physical Chemistries.
- 2.Students will be able to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.
- 3. Students will be skilled in problem solving practicals related to generation of current.

Unit	Topic	Credit	Hr
1	Electro Chemistry	1	15
	Introduction of terms: Oxidation, Reduction, Redox, Anode		
	Cathode, Electrode, Half-cell Oxidation & Reduction Potential		
	Electo chemical Cell (Galvanic Cell) 2 Representation Cell.		
	Electo chemical series and its Significance.		
	Nearest Equation of cell EMF and Single electrode potential.		
	Describe the Electrode (Metal – Metal ion Electrode, Standard –		
	Hydrogen Electrode, Calomel Electrode, Weston standard		
	Electrode, Glen Electrode, Quienhydron Electrode)		

	Application of cell potential to find out Equilibrium constant,		
	Free Energy and PH		
	Numericals		
2	Inorganic Polymers	1	15
	Classification of Inorganic polymers		
	Polymers containing boron: Borazine, preparation and properties		
	and structure of Borazine, Substituted borazines, Boron nitride		
	Polymers containing Silicones, preparation and properties of		
	Silicones, Types of Silicones.		
	Plymers containing phosphorus, Types of Polymers containing		
	phosphorus, Preparation and properties and Structure of Poly		
	phosphonitritic chlorides, Plyorthophosphoric acid,		
	Borophosphateglases		
	Polymeric compounds of Sulphur, Nirides of		
	sulphur, Thiazylhalides, Imides of sulphur		

- 1. Electroanalytical methods, Allen j, Bard, Springer, 2000.
- 2. Electrochemistry by S. Glasstobne, 3rd edn, Oxford University Press, 1956.
- 3. 'Physical chemistry by s. Glasston, Oxford University Press, 1960.
- 4. 'electrochemistry by I O Bockris,, vol 1, 2, 3, Francis and taylor, 1990.
- 5. Inorganic polymers by James E. Mark, Oxford publisher 2005.
- 6. Inorganic polymers by Chatwal, Himalyan publishers, 2018.

Further Reading:

- 1. Essentials of physical Chemistr by B.S.Bahal, ArunBahal. G. D.Tuli.
- 2. Physical Chemistry by P.W.Atkins. 5th edn.Oxferd 1994 7thedn-2002.

Program Name: B. Sc. Chemistry Semester: IV

PROGRAM CODE: SCIUG102

COURSE CODE : SC23PMIDSCCHE402

Type of Course: Practicals Minor (Elective) Discipline Specific Course PMIDSC

Name of Course: Practical's for simplified chemistry I

Total Marks : 50

Effective from June 2023 Under NEP 2020

Ī	Total Credits: 02	Teaching Hours per Week:	04	Practicals	External 25 Marks
	La	b Teaching Hours per semeste	r:60		Internal 25 Marks
	Minimum Num	ber Practicals to be Performed	l: 10		

Course Objectives:

- 1. To learn complexometric titrations.
- 2. Preparation of solutions and required standardization.

- 1. Students will gain a comprehensive knowledge and skills in standardization and preparation of solutions for carrying out complexometric titrations.
- 2. To understand basic methods to estimate the metal ionss on the basis of complexation with ligands.

Sr.No.	List of Practicals	Credit	Hr
1	Inorganic Quantitative analysis. (Any 10)	1	30
	1. Estimation of Ca by complexometric titration.		
	2. Estimation of Mg by complexometric titration.		
	3. Estimation of Cu by EDTA complexometric titration		
	4. Estimation of Cu by Iodometrical titration		
	5. To estimate ferrous (Fe ⁺²) and ferric (Fe ⁺³) ions given in the		
	mixture.		
	6.To determine the strength of Ferrous ammonium sulphate by		
	$K_2Cr_2O_{7.}$		
	7. To determine the amount of Zn by EDTA Method.		
	8. To determine the amount of Ni by EDTA Method.		

- 9. Estimation of Glucose/Aniline/Phenol
- 10. To determine the amount of Aniline by Brominating Method.
- 11. To determine the amount of Phenol by Brominating Method.
- 12. To determine the amount of Glucose by oxidation Method

- 1. Practical Chemistry: For B.Sc. I, II And III Year Students of All India Universities By Pandey O.P. & et Al. publisher S. Chand's, Paperback December 2010.
- 2. Basic Principles of Practical Chemistry,
- by V. Venkateswaran (Author) publisher S. Chand's, Paperback 1 January 2012
- 3. Chemistry In Laboratory-B.Sc.-Sem-I-Vi-Hons.
- By Dr.Subhojit Ghosh (Author), Dr.Madhushree Das Sharma (Author), publisher CBCS, Paperback 1 January 2019.

Further Reading:

- 1. Practical Chemistry, By Sonia Ratnani (Author), Swati Agrawal (Author), Sujeet Kumar Mishra (Author) publisger Mc Graw Hill, 1st Edition Paperback 16 September 2020.
- 2. B.Sc. Practical Chemistry First Year By Paperback, Dr. M.M.N. Tandon, Publisher: Shiva Lal Agarwal & Company, 2020.

Program Name: B. Sc. Chemistry Semester V

PROGRAM CODE: SCIUG102

COURSE CODE: SC23VACCHE405

Type of course: Value Added Course VAC

Name of course: Bhartiya Science and Technology Total Mark: 50

Effective from June 2023 Under NEP 2020

Ī	Total Credits: 02	Teaching Hours per Week: 02	Theory	External 25 Marks
		Teaching hours per semester: 30		Internal 25 Marks

Course Objectives:

- 1. To understand importance Bhartiya science and tecchnology
- 2. To have knowledge about contribution of Bhartiya science and tecchnology.
- 3. To know about great mathematicians to our culture.

- 1. Students will gain a comprehensive knowledge of Bhartiya science and tecchnology.
- 2. To raise awareness among students about Bhartiya science and tecchnology.
- 3. Students will develop faith and honor about our culture.

Unit	Topic	Credit	Hr
1	Fundamentals of Bhartiya science and tecchnology	1	15
	An overviw of indian contribution to technology, technological		
	innovations,		
	Metullrgy, Textile andchemistry: copper/ bronze/Zinc/ gold/ Silver		
	Iron and steel technology, textile and dyeing		
	Chemistry -1: Traditional chemical practices in India- pottery,		
	mortar, cement, essential oils,		
	Chemistry II: Tradittions medical systemsin India Ayurveda, surgery,		
	anatomy, nanoscience.		

2	Ancient applications of bhartiya technology	1	15
	Management: Harappa water management, other case		
	studies, Medieval water structures,		
	Transportation: modes of transpotation and its reforms, development		
	of trading activities,		
	Mathematics: development of mathematics in india, Great		
	mathematicians and their contribution.		
	Unique aspects of mathematics,		

- 1. Science and Technology in ancient indian texts,, Bal Ram singh, girish Nath jha, D K Print publisher, 2012.
- 2. Ancient hindu science, Alok kumar, Jaco publishing house, 2019..
- 3. Engineering and technology in ancient India, Ravi kumar Arya, krishna publisher, 2022.

Further Reading:

- 1. Traditional knowledge system, Amit Jha, Atlantic publisher, 2019.
- 2. A modern introduction to ancient Indian Mathematics, T S Bhanu moorty, New age international publishers, 2008.
- 3. Vedic physics, Keshav Das verma, motilal banaridas publisher, 2012.

- 1. http://www.phindia.com
- 2. https://www.garudabooks.com
- 3. https://www.exotiindiaart.com/
- 4. https://www.anaadi.org

Program Name: B. Sc. Chemistry Semester: IV

PROGRAM CODE: SCIUG102 COURSE CODE: SC23SECCHE406

Type of course: Skill Enhancement course SEC

Name of course: Green chemistry

Effective from June 2023 Under NEP 2020

Total Credits: 02 Teaching Hours per Week: 02	Theory	External 25 Marks
Teaching hours per semester: 30	Mark: 50	Internal 25 Marks

Course Objectives:

- 1. To understand importance of taking precautions in study of Chemical reactions in greener way.
- 2. To have knowledge of lab wastage and save the chemicals.
- 3. To know about designing green synthesis.

- 1. Students will gain a comprehensive knowledge and skills in assessing laboratory reagents and use of them in greener ways.
- 2. To understand the importance of cost of chemicals, environment protection and safety in performing green experiments.
- 3. Students will learn how to use chemicals in greener ways and makingichemical laboratories.

Unit	Topic	Credit	Hr
1	BASICS OF GREEN CHEMISTRY:	1	15
	Introduction of green Chemistry, Twelve principles of green		
	chemistry. Green products, recycling of waste,		
	Green Fuels methods:Natural gas reforming Methods.		
	Coal gasification Process. Hydrogen gas, Biomass gasification,		
	Eco-efficiency-environmental protection laws.		
	Inception of green chemistry-awards for green		
	chemistry.International organizations promoting green chemistry.		

2	Designing Green Synthesis	1	15
	Choice of starting materials, choice of reagents, choice of catalysts.		
	Bio catalysts, polymer supported catalysts, choice of		
	solvents. Synthesis involving basic principles of green chemistry.		
	Green approaches in synthesizing of Nanomaterials (ZnO, TiO ₂) for		
	environment.		
	Examples - Adipic acid, Catechol, Methyl methacrylate, Urethane,		
	Aromatic amines (4-aminodiphenylamine), Benzyl bromide,		
	Acetaldehyde, Citral, Ibuprofen, Paracetamol, Asprin.		

- 1. V.K.Ahluwalia & M.R.Kidwai : New Trends in Green Chemistry, Anamalaya Publishers (2005).
- 2. V.Kumar, An Introduction to Green Chemistry, Vishal Publishing Co.Jalandhar, 2007.
- 3. Sanghi A Shrivastav Green Chemistry, Krihna publications, 2016
- 4. Chemistry of Fosil Fuels and fuels, Harold H Schobert First published 2013 ISBN 978-0-521-11400-4

Further Reading:

- 1. http://chemcollective.org/vlabs
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. https://wp.labster.com/chemistry-virtual-labs/
- 4. https://www.youtube.com/watch?v=O nyEj hZzg

Program Name : B. Sc. Chemistry Semester : IV

PROGRAM CODE: SCIUG102 COURSE CODE: SC23SECCHE406A

Type of course: Skill Enhancement course SEC

Name of course : Ceramics Total Mark: 50

Effective from June 2023 Under NEP 2020

Total Credits: 02	Teaching Hours per Week: 02	Theory	External 25 Marks
Teaching hours per semester: 30			Internal 25 Marks

Course Objectives:

- 1. To understand importance of ceramics used in day todaylife
- 2. To have knowledge of basic of raw materials used inceramic industry.
- 3. To know about primary and secondary kilns needed for ceramic manufacture.

- 1. Students will gain a comprehensive knowledge and skills in assessing laboratory testing needed for ceramic industry.
- 2. To understand the importance ceramics for practicl utility
- 3. Students will oftion to ceramic industry as carrer.

Unit	Topic	Credit	Hr
1	Introduction of ceramics,	1	15
	Definition and Ceramics bodies, Procedures of body preparation.		
	Quality testing of raw material: Grinding, sieving and		
	demagnetizing.		
	Filter pressing, Dearing pug mill, Slip casting & slip Parameters,		
	Finishing & Glazing & Firing, Type of kiln		
	Industrial uses of ceramics modern ceramics – Hi-tech Ceramics-		
	Sub-division in Ceramics.		

2	Property Measurement Of Ceramic & Refractories	1	15
	Common physical test in ceramics, Moisture measurement, Grit		
	content, Specific density, Water of plasticity(WOP), Viscosity, Dry		
	shrinkage, Porosity, Water absorption, Fired shrinkage		
	Loss of ignition(LOI) & Module of rapture(MOR), Crazing test		
	Classification of Refractories		
	Properties and application of refractories		
	Manufacturing process of silica bricks		

- 1. 1. Industrial ceramics Felix singer and Sonja S. Singer, Springer, august 2014.
- 2. Ceramics technology and processing Alan G. king
- 3. Modern industrial ceramics, Stafford, Macmillian publishing company, 1980.
- 4. Source book of Ceramics, part-1 and 2 by S.Kumar, Krishna publishers 2022.

Further Reading:

- 1. http://chemcollective.org/vlabs
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. https://wp.labster.com/chemistry-virtual-labs/
- 4. https://www.youtube.com/watch?v=O_nyEj_hZzg