

The symmetry relationship in the molecular structure understand by the basis for mathematical theory is called

DR.N.I.PATEL
CHEMISTRY DEPT.
Science College. Himatnagar

UNIT-01 Symmetry \& Group Theory

16 Hrs

- Outline of symmetry elements and symmetry operation
- Schonflies method for determining the point group of the molecules.
- Multiplication of symmetry operation and multiplication table for $\mathrm{C}_{2} \mathrm{v}, \mathrm{C}_{3} \mathrm{v}, \mathrm{C}_{2 \mathrm{~h}}$.
- Equivalent symmetry elements, similarity transformation and conjugacy of symmetry operation within the point group
- Matrics: Characteristics, types of matrices(common \& special), and Algebra of matrices(Particularly Multiplication)
Use of Matrix and matrix representation of symmetry Elements and Their point groups(using various Vectors: position vector, translation vector, base vector)
- $\Gamma_{3 \mathrm{~N}}$ Representation :For $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{PtCl}_{4}, \mathrm{PCl}_{5}, \mathrm{SF}_{6}, \mathrm{POCl}_{3}, \mathrm{CCl}_{4}, \mathrm{Cis}$ \& Trans $\mathrm{N}_{2} \mathrm{~F}_{4}, \mathrm{XeOF}_{4}$
- Reducible and Irreducible Representation\& charactor Table
- Characteristics of Irreducible Representation: The great orthogonality theorem
- Construction of Character Table For $\mathrm{C}_{3} \mathrm{v}$ using properties of irreducible Representation
- Direct product and its utility.

UNIT 02 : Group theory and its applications

- Character table and their presentation
- Reduction formula for reducible representation of any matrix presentation of particular point groups
- Application of symmetry to hybrid orbital, molecular orbital
- Hybridisation schemes for sigma-orbitals (for AB_{3} : planar triangle, trigonal pyramidal e.g. $\mathrm{BF}_{3} \& \mathrm{NH}_{3}, \mathrm{AB}_{4}$: tetrahedral and square planar molecules e.g. $\mathrm{CH}_{4} \&\left[\mathrm{PtCl}_{4}\right]^{-2}, \mathrm{AB}_{5}$: trigonal bipyramidal \& square pyramidal e.g. $\mathrm{PCl}_{5} \& \mathrm{IF}_{5}$ and AB_{6} : octahedral e.g. SF_{6} and pi-orbital for AB_{3} (e.g. BF_{3}) AB_{6} (e.g. SF_{6})
- Application of symmetry to molecular vibrations, interpretation of IR \& Raman activity. (spectral data)

MATHEMATICAL REQUIREMENTS FOR A GROUP THEORY

The S.E. of molecule Collect correctly by physical inspection but it is necessary to check whether they from complete set.

A complete set of S.E. should satisfy the following four criteria which is define a mathematical group.

1. Closure rule
2. Associative Rule
3. Identity rule
4. Inverse rule
5. Closure rule.:

The product of any two element and the square of any element in a group is also an element of in the same group.

- $\quad A . B=C$ or $A^{2}=C$; where A, B and C are same group elements.
- $\quad \mathbf{A} \cdot \mathbf{B}=\mathbf{C}$ and $\mathbf{B} \cdot \mathbf{A}=\mathbf{C}$, then A and B are commute.
- $A \cdot B=C$ and $B \cdot A=D$, then A and B are not commute.
- All element of any group are commute with each other, then such a group is called "Abelian or Cyclic Group".
- Abelian or Cyclic Groups: $\mathrm{C}_{2} ; \mathrm{S}_{2} ; \mathrm{C}_{2} \mathrm{~h} ; \mathrm{C}_{2} \mathrm{v} ; \mathrm{D}_{2} ; \mathrm{D}_{2} \mathrm{~h}$

Square of element

Element	Square of element
σ	$\sigma^{2}=E$
i	$i^{2}=E$
C_{n}^{m}	$\left(C_{n}^{m}\right)^{2}=C_{n}^{2 m}$
S_{n}^{m}	$\left(S_{n}^{m}\right)^{2}=S_{n}^{2 m}=C_{n}^{2 m} \cdot \sigma^{2 m}=C_{n}^{2 m}$

$$
\left(S_{3}^{2}\right)^{2}=\left(C_{3}^{4}=C_{3}^{1}\right)
$$

$$
\left(C_{3}^{2}\right)^{2}=C_{3}^{4}=C_{3}^{1}
$$

$\longrightarrow\left(C_{3}^{2}\right)^{2}=C_{3}^{4}=C_{3}^{1}$

2. Associative Rule.: All the symmetry elements must obey the associative law of multiplication.

- $\quad(A B) C=A(B C) O R A(C B) D=(A B)(C D)$;
- where A, B and C and D are same group elements.

In NH_{3} six elements are present, they are obey the associative law.
$C_{3 v} \Rightarrow C_{3}^{1} \cdot C_{3}^{2} \cdot \sigma_{v}^{1} \cdot \sigma_{v}^{2} \cdot \sigma_{v}^{3}$
Associative law ; $(A B) C=A(B C)$ [Antilock wise rotation]
$\left(C_{3}^{1} \cdot C_{3}^{2}\right) \sigma v^{1}=C_{3}^{1}\left(C_{3}^{2} \cdot \sigma v^{1}\right)$
$\left(C_{3}^{3}\right) \sigma v^{1}=C_{3}^{1}\left(\sigma v^{2}\right)$
$\sigma v^{1}=\sigma v^{1}$

3. Identity rule.:

There should be atleast one E element in the group which when combined with all other elements must leave them unchanged.

- $A . E=A$, where A is any element of any group.

4. Inverse rule.:

Each element has a reciprocal (inverse), which is also an element of the same group. And the combination of element and the reciprocal of such element is always E.

- Inverse of Element A is $A^{-1}=B$ where A and B are same group elements.
- Hear A. $\mathrm{A}^{-1}=\mathrm{E}$

S.E.	n	m	Inverse of S.E.	Multiplication S.E. \times Inverse of S.E. = E
σ			σ	$\sigma \cdot \sigma=E$
i			i	$i \cdot i=E$
C_{n}^{m}	Even or Odd	Even or Odd	C_{n}^{n-m}	$C_{n}^{m} \cdot C_{n}^{n-m}=C_{n}^{m+n-m}=C_{n}^{n}=E$
S_{n}^{m}	Even	Even or Odd	S_{n}^{n-m}	$S_{n}^{m} \cdot S_{n}^{n-m}=S_{n}^{m+n-m}=S_{n}^{n}=E$
	Odd	Even	C_{n}^{n-m}	$S_{n}^{m} \cdot C_{n}^{n-m}=C_{n}^{m} \cdot \sigma^{m} C_{n}^{n-m}=C_{n}^{m+n-m} \sigma^{m}=E$
	Odd	Odd	$S_{n}^{2 n-m}$	$S_{n}^{m} \cdot S_{n}^{2 n-m}=S_{n}^{m+2 n-m}=S_{n}^{2 n}=C_{n}^{2 n} \sigma^{2 n}=E$

All the algebraic properties of a group can be complied in the from of table called GMT.
Condition:

1. Every ele. of the group occurs once and only once in any raw or column of GMT.
2. First a raw a column consisting of the all ele. of group, E must always be first in raw and column.
3. The order of multiplication must be by either row into column or column in to raw.
4. Multiplication for non cyclic group [Column *raw (anti clock wise)].
5. The product ele. at the cross junction in the body of table.

GMT for C2v; C3v and C2h Point Group.

d

Group Multiplication Table for $\mathrm{C}_{2 \mathrm{v}}$

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	σ_{xz}	σ_{yz}
E	E	C_{2}	σ_{xz}	σ_{yz}
C_{2}	C_{2}	E	σ_{yz}	σ_{xz}
σ_{xz}	σ_{xz}	σ_{yz}	E	C_{2}
σ_{yz}	σ_{yz}	σ_{xz}	C_{2}	E

GMT for C2v; C3v and C2h Point Group.

$\mathrm{C}_{3} \mathrm{v}$	E	C_{3}	$\mathrm{C}_{3}{ }_{3}$	-v1	-v2	ov3
E	E	Cl_{3}	C_{3}	ov1	ov2	ov3
C_{3}	Cl_{3}	$\mathrm{C}_{3}{ }^{\text {a }}$	E	ov3	ov1	бv2
$\mathrm{C}_{3}{ }_{3}$	$\mathrm{C}_{3}{ }^{2}$	E	C_{3}	ov2	бv3	ov1
-v1	бv1	ov2	бv3	E	C_{3}	$\mathrm{C}_{3}{ }^{\text {a }}$
бv2	бv2	ov3	ov1	$\mathrm{C}_{3}{ }^{3}$	E	C_{3}
бv3	бv3	ov1	ov2	$\mathrm{C}_{3}{ }_{3}$	C_{3}	E

GMT for C 2 v ; C3v and C2h Point Group.

Isomorphic Group :

There are two or more groups have same GMT (No of Element , No of Column and Raw are Same) and algebraic structure are said to be isomorphic group.

$$
\begin{aligned}
& C_{2 h} \approx C_{2 v} \approx D_{2} \\
& C_{n} \approx S_{n}
\end{aligned}
$$

n-even

$C_{2 v}$	E	$C_{z(z)}$	$\sigma_{x z}$	$\sigma_{y z}$
E	E	$C_{z(z)}$	$\sigma_{x z}$	$\sigma_{y z}$
$C_{2(z)}$	$C_{z(z)}$	E	$\sigma_{y z}$	$\sigma_{x z}$
$\sigma_{x z}$	$\sigma_{x z}$	$\sigma_{y z}$	E	$C_{z(z)}$
$\sigma_{y z}$	$\sigma_{y z}$	$\sigma_{x z}$	$C_{z(z)}$	E

$\left.\begin{array}{l}C_{n v} \approx D_{n} \\ D_{2 n} \approx D_{n d}\end{array}\right\} n$-any value (even or odd)

$$
\left.\begin{array}{l}
D_{n h} \approx D_{n d} \\
C_{n h} \approx C_{2 n}
\end{array}\right\} \mathrm{n} \text {-Odd }
$$

$$
C_{2} \approx C_{s} \approx C_{i}
$$

$$
D_{2} \approx C_{2 h}
$$

D_{2}	E	$C_{2(z)}$	$C_{2(x)}$	$C_{2(y)}$
E	E	$C_{2(z)}$	$C_{2(x)}$	$\dot{C}_{2(y)}$
$C_{2(z)}$	$C_{2(z)}$	E	$C_{2(y)}$	$C_{2(x)}$
$C_{2(x)}$	$C_{2(x)}$	$C_{2(y)}$	E	$C_{2(z)}$
$C_{2(y)}$	$C_{2(y)}$	$C_{2(x)}$	$C_{2(z)}$	E

$\mathrm{C}_{2 \mathrm{~h}}$	E	$\mathrm{C}_{2(z)}$	$\sigma_{x y}$	i
E	E	$\mathrm{C}_{2(\mathrm{z})}$	$\sigma_{x y}$	i
$\mathrm{C}_{2(z)}$	$\mathrm{C}_{2(7)}$	E	i	$\sigma_{x y}$
$\sigma_{x y}$	$\sigma_{x y}$	i	E	$\mathrm{C}_{2(z)}$
i	i	$\sigma_{x y}$	$\mathrm{C}_{2(z)}$	E

Group Generating element.

In the entire list of symmetry elements of P.G., a small No. of ele. Will be very important to define the P.G., are Called 'Group Generating elements'

For example, consider D3h point group which is contains the following 12 elements. $\left[\mathrm{BF}_{3}\right]$

$$
D_{3} h: E, C_{3}^{1}, C_{3}^{2}, 3 C_{2}^{1}, 3 \sigma_{v}, \sigma_{h}, S_{3}^{1}, S_{3}^{5}
$$

The group generating elements are only three elements.

$$
C_{3}^{1}, 3 C_{2}^{1}, \sigma_{h}
$$

Point Group	Group generating elements
C_{1}	C_{1}
C_{s}	σ
C_{i}	i
C_{n}	C_{n}^{1}
$C_{n v}$	C_{n}^{1}, σ_{v}
$C_{n h}$	C_{n}^{1}, σ_{h}
D_{n}	C_{n}^{1}, C_{2}^{*}
$D_{n d}$	$C_{n}^{1} \cdot C_{2}^{*}, \sigma_{d}$
$D_{n t}$	$C_{n}^{1}, C_{2}^{*}, \sigma_{h}$
$S_{n}(n=e v e n)$	S_{n}^{1}
$C_{c o v}$	$C_{c o,}, \sigma_{v}$
$D_{c h}$	$C_{c n}, C_{2}^{*}, \sigma_{h}$

SUBGROUPS

There are always smaller groups in larger groups, Subgroup is a group of symmetry elements of main group.

They are two types-
(i) Trivial subgroup, in which there is only one element $\mathrm{E}(\mathrm{h}=1)$
(ii) Non-trivial type of subgroups, in which element E is invariably present ($h>=2$.)
-A subgroup, which is a part of the group, satisfies all the rules of a full group.

- If the order of the subgroup is ' g ', and that of the full group is ' h '.

Then, $h / g=k$ where, K is integral.

$\begin{gathered} \text { Point } \\ \text { Group } \end{gathered}$	Sub groups	Symmetric Elements	m
$\mathrm{C}_{2} \mathrm{v}$	E, C $\mathrm{C}_{2}, 2 \sigma_{\mathrm{v}}$		
	C,	E, σ_{v}	2
	C_{2}	E, C_{2}	2
$\mathrm{C}_{3} \mathrm{~V}$	E, $C_{3}^{1}, C_{3}^{2}, 3 \sigma_{v}$		
	C_{5}	E, σ_{v}	2
	C_{3}	E, C_{3}^{1}, C_{3}^{2}	3
$\mathrm{C}_{4} \mathrm{~V}$	E, $C_{4}^{1}, C_{4}^{2}, C_{4}^{3}, 4 \sigma_{\mathrm{v}}$		
	$\mathrm{C}_{\text {s }}$	E, σ_{v}	2
	C_{2}	E, C_{4}^{2}	2
	C_{4}	E, $C_{4}^{1}, C_{4}^{2}, C_{4}^{3}$,	4
	$\mathrm{C}_{2} \mathrm{v}$	E, $C_{4}^{2}, 2 \sigma_{v}$	4

All the subgroups satisfies all the rules of a full group. All the rules are write in GMT.

However, subgroup differ from their full group in one aspect.
The elements of a full group need not necessarily commute with each other, but the elements of a sub group do necessarily commute. E.g. all sub groups are always Cyclic or Abelian group.
(ii) Consider $D_{3 h}$ point group as a second example:

It has the following elements:

$$
D_{3 h} \rightarrow E, C_{3}^{1}, C_{3}^{2}, C_{2}, C_{2}^{\prime}, C_{2}^{\prime \prime}, \sigma_{2}, \sigma_{2}^{\prime}, \sigma_{2}^{\prime \prime}, \sigma_{h}, S_{3}^{1}, S_{3}^{5}
$$

The subgroups can be written as

$$
\begin{aligned}
& C_{1} \rightarrow E \\
& C_{2} \rightarrow E, C_{2} \\
& C_{2}^{\prime} \rightarrow E, C_{2}^{\prime} \\
& C_{2}^{\prime \prime} \rightarrow E, C_{2}^{\prime \prime} \\
& C_{s}^{h} \longrightarrow E, \sigma_{h} \\
& C_{s} \rightarrow E, \sigma_{v} \\
& C_{s}^{\prime} \rightarrow E, \sigma^{\prime} \\
& C_{i \prime \prime}^{\prime \prime} \rightarrow E, \sigma_{!}^{\prime \prime} \\
& C_{3} \rightarrow E, C_{3}^{1}, C_{\frac{2}{3}}^{2} \\
& C_{3 h} \rightarrow E, C_{3}^{1}, C_{3}^{2}, \sigma_{h}, S_{3}^{1}, S_{3}^{5} \\
& \text { (cyclic) }(g=1) \\
& \text { (cyclic) }(g=2) \\
& \text { (cyclic) }(s=3) \\
& C_{3 v} \rightarrow E_{0} C_{3}^{1}, C_{3}^{2}, \sigma_{v}, \sigma_{v}^{\prime}, \sigma_{n}^{\prime \prime} \\
& (\mathrm{g}=6) \\
& D_{3} \rightarrow E_{1} C_{3}^{1}, C_{3}^{2}, C_{2}, C_{2}^{\prime}, C_{2}^{\prime \prime} \\
& (g=6) \\
& (g=6)
\end{aligned}
$$

Classes of group.

How it is possible to select sets of S.E. constituting of group. There is way to sorting S.E. of a group in to class.

A set of elements which are conjugate to one another is called class of group.

What is conjugation ?

If A, B and X are same group elements. Than,

$$
X^{-1} \times A \times X=B \quad O R \quad X^{-1} \times B \times X=A,
$$

so that A and B are conjugated to one another.

Types of Conjugation:

1. Every ele. is conjugate with itself. $\left[\mathrm{X}^{-1} \times \mathrm{A} \times \mathrm{X}=\mathrm{A}\right]$ is called Self conjugation.
2. If A and B conjugate with one another. $\left[X^{-1} \times A \times X=B O R X^{-1} \times B \times X=A,\right]$ is called Mutual conjugation
3. If A is conjugate with B and C then B and C are conjugated with each other.

$$
\mathrm{X}^{-1} \times \mathrm{A} \times \mathrm{X}=\mathrm{B} \text { OR } \mathrm{X}^{-1} \times \mathrm{A} \times \mathrm{X}=\mathrm{C}, \mathrm{X}^{-1} \times \mathrm{B} \times \mathrm{X}=\mathrm{C} \text { OR } \mathrm{X}^{-1} \times \mathrm{C} \times \mathrm{X}=\mathrm{B} \text {, is called Associative conjugation. }
$$

An example of C3V group, and work out the similarity transform of each the six ele. with every other.

E	E	E	=E
$\mathrm{C}_{3}{ }_{3}$	E	C_{3}	= E
$\mathrm{C}_{3}{ }^{1}$	E	$\mathrm{C}_{3}{ }_{3}$	= E
$\sigma \mathbf{v}$	E	$\sigma \mathrm{v}$	=E
σv^{\prime}	E	$\sigma{ }^{\prime}$	= E
$\sigma{ }^{\prime}$	E	$\sigma \mathrm{v}$ "	= E
Self conjugation			

$$
\begin{aligned}
& C_{3} v: E \cdot C_{3}^{1} \cdot C_{3}^{2} \cdot \sigma_{v} \cdot \sigma_{v}^{\prime} \cdot \sigma_{v}^{\prime \prime}
\end{aligned}
$$

\mathbf{E}	$\sigma \mathbf{v}$	\mathbf{E}	$=\sigma \mathbf{v}$
\mathbf{C}_{3}^{2}	$\sigma \mathbf{v}$	$\mathbf{C}_{3}{ }_{3}$	$=\sigma \mathbf{v}^{\prime}$
\mathbf{C}_{3}^{1}	$\sigma \mathbf{v}$	\mathbf{C}_{3}^{2}	$=\sigma \mathbf{v}^{\prime}$
$\sigma \mathbf{v}$	$\sigma \mathbf{v}$	$\sigma \mathbf{v}$	$=\sigma \mathbf{v}$
$\sigma \mathbf{v}^{\prime}$	$\sigma \mathbf{v}$	$\sigma \mathbf{v}^{\prime}$	$=\sigma \mathbf{v}^{\prime \prime}$
$\sigma \mathbf{v}^{\prime \prime}$	$\sigma \mathbf{v}$	$\sigma \mathbf{v}^{\prime \prime}$	$=\sigma \mathbf{v}^{\prime}$

$C_{3} v: E \cdot C_{3}^{1} \cdot C_{3}^{2} \cdot \sigma_{v} \cdot \sigma_{v}^{\prime} \cdot \sigma_{v}^{\prime \prime}$

\mathbf{E}	$\sigma \mathbf{v}^{\prime}$	\mathbf{E}	$=\sigma \mathbf{v}^{\prime}$
\mathbf{C}_{3}^{2}	$\sigma \mathbf{v}^{\prime}$	$\mathbf{C}_{3}{ }_{3}$	$=\sigma \mathbf{v}$
$\mathbf{C}_{3} \mathbf{3}^{\prime}$	$\sigma \mathbf{v}^{\prime}$	\mathbf{C}_{3}^{2}	$=\sigma \mathbf{v}^{\prime}$
$\sigma \mathbf{v}$	$\sigma \mathbf{v}^{\prime}$	$\sigma \mathbf{v}$	$=\sigma \mathbf{v}^{\prime \prime}$
$\sigma \mathbf{v}^{\prime}$	$\sigma \mathbf{v}^{\prime}$	$\sigma \mathbf{v}^{\prime}$	$=\sigma \mathbf{v}^{\prime}$
$\sigma \mathbf{v}^{\prime \prime}$	$\sigma \mathbf{v}^{\prime}$	$\sigma \mathbf{v}^{\prime \prime}$	$=\sigma \mathbf{v}$
Mutual conjugation			

\mathbf{E}	$\sigma \mathbf{v}^{\prime \prime}$	\mathbf{E}	$=\sigma \mathbf{v}^{\prime \prime}$
\mathbf{C}_{3}^{2}	$\sigma \mathbf{v}^{\prime \prime}$	\mathbf{C}_{3}^{1}	$=\sigma \mathbf{v}^{\prime}$
\mathbf{C}_{3}^{1}	$\sigma \mathbf{v}^{\prime \prime}$	\mathbf{C}_{3}^{2}	$=\sigma \mathbf{v}$
$\sigma \mathbf{v}$	$\sigma \mathbf{v}^{\prime \prime}$	$\sigma \mathbf{v}$	$=\sigma \mathbf{v}^{\prime}$
$\sigma \mathbf{v}^{\prime}$	$\sigma \mathbf{v}^{\prime \prime}$	$\sigma \mathbf{v}^{\prime}$	$=\sigma \mathbf{v}$
$\sigma \mathbf{v}^{\prime \prime}$	$\sigma \mathbf{v}^{\prime \prime}$	$\sigma \mathbf{v}^{\prime \prime}$	$=\sigma \mathbf{v}^{\prime \prime}$

There are three class of C_{3} v.G. $\quad C_{3} v: E \cdot 2 C_{3} \cdot 3 \sigma_{v}$

An important note on Classes:

\checkmark In all Abelian P.G. each element is in a class by itself., e.g. the number of element (order of group=h) is equal to the number of Class.

Abelian or Cyclic Groups: $\mathrm{C}_{2} ; \mathrm{S}_{2} ; \mathrm{C}_{2} \mathrm{~h} ; \mathrm{C}_{2} \mathrm{~V}_{0} \mathrm{D}_{2} ; \mathrm{D}_{2} \mathrm{~h}$.
\checkmark In non Ablelian group the number of classes is always less than the order of group=h.

Sr. No.	Point Group	Symmetric Elements	h	k
$\mathbf{1}$	$\mathrm{C}_{\mathbf{1}}$	E	1	1
$\mathbf{2}$	$\mathbf{C s}$	E, σ	2	2
$\mathbf{3}$	$\mathbf{C i}$	E, i	2	2
$\mathbf{4}$	$\mathrm{C}_{2} \mathbf{v}$	$\mathrm{E}, \mathrm{C}_{2}, 2 \sigma_{\mathrm{v}}$	4	4
$\mathbf{5}$	$\mathrm{C}_{\mathbf{3}} \mathbf{v}$	$\mathrm{E}, C_{3}^{1}, C_{3}^{2}, 3 \sigma_{\mathrm{v}}$	6	3
$\mathbf{6}$	$\mathbf{C}_{4} \mathbf{v}$	$\mathrm{E}, C_{4}^{1}, C_{4}^{2}, C_{4}^{3}, 4 \sigma_{\mathrm{v}}$	8	5
$\mathbf{7}$	$\mathbf{C}_{5} \mathbf{v}$	$\mathrm{E}, C_{5}^{1}, C_{5}^{2}, C_{5}^{3}, C_{5}^{4}, 5 \sigma_{\mathrm{v}}$	10	4
$\mathbf{8}$	$\mathrm{C}_{6} \mathbf{v}$	$\mathrm{E}, C_{6}^{1}, C_{6}^{2}, C_{6}^{3}, C_{6}^{4}, C_{6}^{5}, 6 \sigma_{\mathrm{v}}$	12	6
$\mathbf{9}$	$\mathrm{C}_{2} \mathbf{h}$	$\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{h}}, \mathrm{i}$	4	4
$\mathbf{1 0}$	$\mathrm{C}_{3} \mathrm{~h}$	$\mathrm{E}, C_{3}^{1}, C_{3}^{2}, \sigma_{\mathrm{h}}, S_{3}^{1}, S_{3}^{5}$	6	6
$\mathbf{1 1}$	$\mathrm{C}_{4} \mathrm{~h}$	$\mathrm{E}, C_{4}^{1}, C_{4}^{2}, C_{4}^{3}, \sigma_{\mathrm{h}}, S_{4}^{1}, S_{4}^{3}, \mathrm{i}$	8	8
$\mathbf{1 2}$	$\mathrm{C}_{5} \mathrm{~h}$	$\mathrm{E}, C_{5}^{1}, C_{5}^{2}, C_{5}^{3}, C_{5}^{4}, \sigma_{\mathrm{h}}, S_{5}^{1}, S_{5}^{3}, S_{5}^{7}, S_{5}^{9}$	10	10

Some hints on classes:

(i) E is always in a class by itself. i. e.. E is transformed into itself by all the elements of the group.
(ii) Inversion element, i. is in a class by itself.
(iii) All $\mathrm{C}_{\mathrm{n}}^{\mathrm{m}}$ axes are in a class.
(iv) Similar $\mathrm{C}_{2} \mathrm{~s}$ are in one class.
(v) $\mathrm{S}_{\mathrm{n}}^{m}$ aves like $\mathrm{C}_{\mathrm{n}}^{m}$ are in a class. If there are two or many such types. they are placed in as many classes.
(vi) Similar vertical planes $\left(\sigma_{v}\right)$ and similar dihedral planes $\left(\sigma_{d}\right)$ are in separate classes.
(vii) Horizontal plane is a special plane (σ_{h}) and is always placed in a different class from other planes.

$C_{2 v}$	E	C_{2}	$\sigma_{2}(x z)$	$\sigma_{v}^{\prime}(y z)$		
$(2 m m)$			1	1	z	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{4}$	1	1	1	1	R_{z}	$x y$
$\mathrm{~A}_{2}$	1	1	-1	-1	x, R_{y}	$x z$
$\mathrm{~B}_{1}$	1	-1	1	-1	1	y, R_{z}
$\mathrm{~B}_{2}$	1	-1	-1	1	$y z$	

| $C_{3 v}$ | E | $2 C_{3}$ | $3 \sigma_{v}$ | | |
| :--- | :--- | ---: | ---: | :--- | :--- | :--- |
| $(3 m)$ | | 1 | 1 | z | $x^{2}+y^{2}, z^{2}$ |
| $\mathrm{~A}_{4}$ | 1 | 1 | -1 | R_{z} | |
| $\mathrm{~A}_{2}$ | 1 | 1 | 0 | $(x, y)\left(R_{z}, R_{2}\right)$ | $\left(x^{2}-y^{2}, 2 x y\right)(x z, y z)$ |
| E | 2 | -1 | 0 | | |

$\begin{aligned} & C_{\varepsilon_{v}} \\ & (4 m n) \end{aligned}$	E	$2 C_{4}$	C_{2}	$2 \sigma^{*}$	$2 \sigma_{s}$		
A_{4}	1	1	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	1	-1	-1	$R_{\text {s }}$	
B_{1}	1	-1	1	1	-1		$x^{2}-y^{2}$
B_{2}	1	-1	1	-1	1		
E	,	0	-2	0	0	$(x, y)\left(R_{z}, R_{y}\right)$	(xz, yz)

| $C_{s v}$ | E | $2 C_{5}$ | $2 C_{s}^{2}$ | $5 \sigma_{\mathrm{v}}$ | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| A_{4} | 1 | 1 | 1 | 1 | z | $x^{2}+y^{2}, z^{2}$ |
| $\mathrm{~A}_{2}$ | 1 | 1 | 1 | -1 | R_{z} | |
| E_{1} | 2 | $2 \cos 72^{\circ}$ | $2 \cos 144^{\circ}$ | 0 | $(x, y)\left(R_{s}, R_{y}\right)$ | $(x z, y z)$ |
| E_{2} | 2 | $2 \cos 144^{\circ}$ | $2 \cos 72^{\circ}$ | 0 | | $\left(x^{2}-y^{2}, 2 x y\right)$ |

C_{6}	E	$2 \mathrm{C}_{6}$	$2 \mathrm{C}_{3}$	C_{2}	$3 \sigma_{\mathrm{v}}$	$3 \sigma_{d}$		
$(6 \mathrm{mn})$					1	1	1	z
$\mathrm{~A}_{4}$	1	1	1	1	-1	-1	R_{y}	$x^{2}+y^{2}, z^{2}$
$\mathrm{~A}_{2}$	1	1	1	1	-1	-1		
$\mathrm{~B}_{1}$	1	-1	1	-1	1	-1		

Matrix Methods in Symmetry and Group Theory

Type of Matrix: (No of Raw \times No of Column $)=(m \times n)$

1. Rectangular matrix
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right](2 \times 3)$
2. Square matrix
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ a & b & c\end{array}\right](3 \times 3)$
3. Diagonal matrix
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & c\end{array}\right](3 \times 3)$
4. Raw matrix
5. Null OR Zero matrix

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right](3 \times 3)
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right](1 \times 3)
$$

4. Column matrix

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right](3 \times 1)
$$

7. Scalar matrix

$$
\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right](3 \times 3)
$$

8. Identity matrix
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right](3 \times 3)$

Character of matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & c
\end{array}\right](3 \times 3)
$$

It is the sum of the diagonal elements of a square matrix

$$
\chi(c h i)=1+5+c
$$

Matrix Mathematics

1. Addition and subtraction of matrix: Simply addition or subtraction of two equal type matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \pm\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{lll}
1 \pm a & 2 \pm b & 3 \pm c \\
4 \pm d & 5 \pm e & 6 \pm f \\
7 \pm g & 8 \pm h & 9 \pm i
\end{array}\right]} \\
& \ldots \ldots(3 \times 3) \ldots \quad(3 \times 3) \ldots \ldots \ldots \ldots \ldots \ldots . .(3 \times 3)
\end{aligned}
$$

Matrix Mathematics

2. Matrix multiplication:

Two matrix $\left(m_{1} X n_{1}\right)$ and $\left(m_{2} X n_{2}\right)$, when $n_{1}=m_{2}$ than the resultant matrix is $\left(m_{1} X n_{2}\right)$

$M=\left[\begin{array}{ll}2 & 3 \\ 2 & 1 \\ 5 & 3\end{array}\right] \quad N=\left[\begin{array}{lll}5 & 3 & 2 \\ 2 & 1 & 4\end{array}\right]$
M is of dimension $3 \times 2, N$ is of dimension 2×3

$$
\begin{aligned}
& M \times N=\left|\begin{array}{lll}
2 * 5+3 * 2 & 2 * 3+3 * 1 & 2 * 2+3 * 4 \\
2 * 5+1 * 2 & 2 * 3+1 * 1 & 2 * 2+1 * 4 \\
5 * 5+3 * 2 & 5 * 3+3 * 1 & 5 * 2+3 * 4
\end{array}\right| \\
& M \times N=\left|\begin{array}{ccc}
16 & 9 & 16 \\
12 & 7 & 8 \\
31 & 18 & 22
\end{array}\right|
\end{aligned}
$$

Commute Matrix

The A and B matrix are square and same type (order) matrix, Multiplication of matrix are

$$
\begin{aligned}
& A B \neq B A \\
& \text { but } \\
& \chi(A B)=\chi(B A)
\end{aligned}
$$

The character of multiplication matrix are equal than A and B matrix are Commute Matrix.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right](2 \times 2) \quad B=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right](2 \times 2)
$$

$$
\begin{aligned}
& A \times B=\left[\begin{array}{ll}
1+4 & 1+2 \\
3+8 & 3+4
\end{array}\right]=\left[\begin{array}{cc}
5 & 3 \\
11 & 7
\end{array}\right] \ldots \chi(A B)=5+7=12 \\
& B \times A=\left[\begin{array}{ll}
1+3 & 2+4 \\
2+3 & 4+4
\end{array}\right]=\left[\begin{array}{ll}
4 & 6 \\
5 & 8
\end{array}\right] \ldots \chi(A B)=4+8=12
\end{aligned}
$$

Matrix representation of symmetry elements

Matrix for E (identity):
Consider ' P ' point on space, coordinates of point P is (X, Y, Z).

> Initial
> (Before operation)
> Final
> (After operation)

Relation of initial and final coordinates represented by mathematical equation.

$$
\begin{aligned}
& \boldsymbol{X}=\boldsymbol{X}^{\prime} \\
& \boldsymbol{Y}=\boldsymbol{Y}^{\prime}
\end{aligned}
$$

OR

$$
\begin{aligned}
& X=1 X^{\prime}+\mathrm{O} Y^{\prime}+\mathrm{O} Z^{\prime} \\
& Y=\mathrm{O} X^{\prime}+1 Y^{\prime}+\mathrm{O} Z^{\prime} \\
& Z=\mathrm{O} X^{\prime}+\mathrm{O} Y^{\prime}+1 Z^{\prime}
\end{aligned}
$$

Representation equations by matrix method.

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
O & 1 & 0 \\
O & O & 1
\end{array}\right] \cdot\left[\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right]
$$

Matrix Representation for E.

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
\mathbf{O} & 1 & 0 \\
\mathbf{O} & \mathbf{O} & 1
\end{array}\right]
$$

Character of E matrix $\quad \mathcal{X}(\boldsymbol{E})=\mathbf{1}+\mathbf{1}+\mathbf{1}=3$
2. Matrix for i (inversion center):

Consider ' \mathbf{P} ' point on space, coordinates of point ' \mathbf{P} ' is ($\mathbf{X}, \mathrm{Y}, \mathrm{Z}$).

$[X, Y, Z]_{\text {opalation }}^{\text {mversion }}\left[-1 X^{\prime},-1 Y^{\prime},-1 Z^{\prime}\right]$

Initial
(Before operation)

Final
(After operation)

Mathematics Relation of initial and final coordinates by mathematical equation

$$
\begin{array}{ll}
\boldsymbol{X}=-\mathbf{1} \boldsymbol{X}^{\prime} & \boldsymbol{X}=-\mathbf{1} X^{\prime}+\mathrm{O} Y^{\prime}+\mathrm{O} Z^{\prime} \\
\boldsymbol{Y}=-\mathbf{1} Y^{\prime} & Y=\mathrm{O} X^{\prime}-\mathbf{1} Y^{\prime}+\mathrm{O} Z^{\prime} \\
Z=-\mathbf{1} Z^{\prime} & Z=O X^{\prime}+\mathrm{O} Y^{\prime}-\mathbf{1} Z^{\prime}
\end{array}
$$

Representation equations by matrix method.

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \cdot\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right]
$$

Matrix Representation for i.

$$
i=\left[\begin{array}{ccc}
-1 & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & -1 & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & -1
\end{array}\right]
$$

Character of i matrix

$$
x(i)=-1-1-1=-3
$$

3. Matrix for σ (plane of symmetry):

Consider ' \mathbf{P} ' point on space, coordinates of point ' \mathbf{P} ' is ($\mathbf{X}, \mathbf{Y}, \mathbf{Z}$).

$$
\begin{aligned}
& {[\boldsymbol{X}, \boldsymbol{Y}, Z]_{\substack{\text { Initial } \\
\text { (Before operation) }}}^{\substack{\text { Re flection }}}\left[\mathrm{O} X^{\prime}, \mathrm{O} Y^{\prime},-1 Z^{\prime}\right]} \\
& \boldsymbol{X}=\mathbf{1} \boldsymbol{X}^{\prime}+\mathbf{O} Y^{\prime}+\mathbf{O} Z^{\prime} \\
& \boldsymbol{Y}=\mathbf{O} \boldsymbol{X}^{\prime}+\mathbf{1} Y^{\prime}+\mathrm{O} Z^{\prime} \\
& \boldsymbol{Z}=\mathbf{O} \boldsymbol{X}^{\prime}+\mathbf{O} Y^{\prime}-\mathbf{1} Z^{\prime}
\end{aligned}
$$

$$
\sigma_{x y}=\left[\begin{array}{ccc}
\mathbf{1} & \mathbf{O} & \mathbf{O} \\
\mathbf{O} & \mathbf{1} & \mathbf{O} \\
\mathbf{O} & \mathbf{O} & \mathbf{- 1}
\end{array}\right] \quad \text { Character of o matrix }
$$

$$
\chi\left(\sigma_{x y}\right)=1+1-1=1
$$

$$
\begin{aligned}
& \boldsymbol{X}=-\mathbf{1} X^{\prime}+\mathbf{O} Y^{\prime}+\mathrm{O} Z^{\prime} \\
& Y=\mathbf{O} X^{\prime}+\mathbf{1} Y^{\prime}+\mathbf{O} Z^{\prime} \\
& Z=\mathbf{O} X^{\prime}+\mathbf{O} Y^{\prime}+\mathbf{1} Z^{\prime}
\end{aligned} \quad \sigma_{y z}=\left[\begin{array}{ccc}
-1 & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & 1
\end{array}\right] \quad \chi\left(\sigma_{y z}\right)=\mathbf{1}
$$

$X=1 X^{\prime}+\mathrm{OY}^{\prime}+\mathrm{O} Z^{\prime}$
$Y=O X^{\prime}-1 Y^{\prime}+\mathrm{O} Z^{\prime}$
$Z=\mathbf{O} X^{\prime}+\mathrm{O} Y^{\prime}+1 Z^{\prime}$

$$
\sigma_{x z}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \chi\left(\sigma_{x z}\right)=1
$$

4. Matrix for Cn (Rotational axis):

Consider ' \mathbf{P} ' point on space, coordinates of point ' \mathbf{P} ' is $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$.

$$
[X, Y, Z] \underset{\operatorname{anticlock}(\theta)}{C_{n(z)}}\left[X^{\prime}, Y^{\prime}, Z^{\prime}\right]
$$

$$
\begin{aligned}
& \sin \phi=\frac{y}{r} \Longrightarrow y=r \cdot \sin \phi \\
& \cos \phi=\frac{x}{r} \Longrightarrow x=r \cdot \cos \phi
\end{aligned}
$$

$\sin \phi=\frac{y}{r} \Rightarrow y=r \cdot \sin \phi$ $\cos \phi=\frac{x}{r} \Rightarrow x=r \cdot \cos \phi$

$$
\sin (\phi+\theta)=\frac{y^{\prime}}{r} \Rightarrow y^{\prime}=r \cdot \sin (\phi+\theta)
$$

$$
y^{\prime}=r \cdot \sin \theta \cos \phi+r \cdot \cos \theta \sin \phi
$$

$$
y^{\prime}=x \sin \theta+y \cos \theta
$$

$$
\cos (\phi+\theta)=\frac{x^{\prime}}{r} \Longrightarrow x^{\prime}=r \cdot \cos (\phi+\theta)
$$

$$
x^{\prime}=r \cdot \cos \theta \cos \phi-r \cdot \sin \theta \sin \phi
$$

$$
x^{\prime}=x \cos \theta-y \sin \theta
$$

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta+O z \\
& y^{\prime}=x \sin \theta+y \cos \theta+O z \\
& z^{\prime}=0 X+O Y+1 z
\end{aligned}
$$

$$
C_{n(z)}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Clockwise Rotation

$$
C_{n(Z)}=\left[\begin{array}{ccc}
\cos (-\theta) & -\sin (-\theta) & 0 \\
\sin (-\theta) & \cos (-\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{r}
\cos (-\theta)=\cos \theta \& \\
\sin (-\theta)=-\sin \theta
\end{array}
$$

$$
\chi\left(C_{n(z)}\right)=2 \cos \theta+1
$$

$$
C_{n(x)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right] \quad C_{n(Y)}=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

5. Matrix for Sn (Improper rotational axis):

Improper rotational $=$ Rotation + reflection
(perpendicular plane to the rotational axis)

$$
\begin{aligned}
& S_{n(z)}=C_{n(z)} \times \sigma_{x y} \\
& S_{n(x)}=C_{n(x)} \times \sigma_{y z} \\
& S_{n(y)}=C_{n(y)} \times \sigma_{x z}
\end{aligned}
$$

$$
S_{n(z)}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

$$
S_{n(z)}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right]
$$

$$
\chi\left(S_{n(z)}\right)=2 \cos \theta-1
$$

$$
S_{n(x)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right] \times\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]
$$

$$
S_{n(Y)}=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right] \times\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & -1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

$$
\begin{aligned}
& E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad C_{n(z)}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \quad S_{n(z)}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right] \\
& \sigma_{x y}=\left[\begin{array}{ccc}
\mathbf{1} & 0 & 0 \\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\mathbf{1}
\end{array}\right] \quad i=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

Character of Symmetry element

S.E.	E	$C n$	σ	$S n$	i
χ	3	$2 \cos \theta+1$	1	$2 \cos \theta-1$	-3

θ	$0 / 360$	30	45	60	90	120	180
$\operatorname{Sin} \theta$	0	$1 / 2$	$1 / \sqrt{2}$	$\sqrt{3} / 2$	1	$\sqrt{3} / 2$	0
$\operatorname{Cos} \theta$	1	$\sqrt{3} / 2$	$1 / \sqrt{2}$	$1 / 2$	0	$-1 / 2$	-1

Matrix representation of point groups or molecules

$C_{2 v} \Longrightarrow E ; C_{2(z)} ; \sigma_{(x y)} ; \sigma_{(y z)}$
$E=\left[\begin{array}{ccc}1 & 0 & 0 \\ \mathbf{O} & 1 & 0 \\ \mathbf{O} & \mathbf{O} & 1\end{array}\right] \quad \sigma_{x y}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right] \quad \sigma_{y z}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$C_{2(z)}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\cos (180) & -\sin (180) & 0 \\ \sin (180) & \cos (180) & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Character of Symmetry element				
$\mathrm{C}_{2 \mathrm{v}}$	E	Cn	$\sigma x y$	$\sigma y z$
χ	3	$2 \cos \theta+1$	1	1
χ	3	-1	1	1

Characteristics of Matrix representation of P.G.

- Matrix representation OR Character can be obtain for any group and Molecules which is called Character Representation of group.
-This character representation are equal to all the molecules having same P.G.

$\mathrm{C}_{2} \mathrm{v}$: H2O; Pyridine,

-This character is equal to the total character of Translation vector character.

$$
\chi_{(R)}=\tau_{(T)}=\tau_{(x)}+\tau_{(y)}+\tau_{(z)}
$$

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

Note:
x, y is indicate the R is obtained through x \& y T.V. (double)
(x, y) is indicate R. obtained through both (x, y) T.V. (single)

$C_{2 v}$	E	$C n$	$\sigma x y$	$\sigma y z$
$\mathrm{~B} 1=\tau_{(\mathrm{x})}$	1	-1	1	-1
$\mathrm{~B} 2=\tau_{(\mathrm{y})}$	1	-1	-1	1
$\mathrm{~A} 1=\tau_{(\mathrm{z})}$	1	1	1	1
$\chi_{(\mathrm{R})}=\tau_{(\mathrm{T})}$	3	-1	1	1

Matrix representation of point groups $\mathrm{C}_{3} \mathrm{v}$

$$
C_{3 v} \Longrightarrow E ; C_{3(z)}^{1} ; C_{3(z)}^{2} ; \sigma_{v}^{1}\left(\sigma_{x z}\right) ; \sigma_{v}^{2} ; \sigma_{v}^{3}
$$

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$C^{1}{ }_{3(Z)}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\cos (120) & -\sin (120) & 0 \\ \sin (120) & \cos (120) & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 / 2 & -\sqrt{3} / 2 & 0 \\ \sqrt{3} / 2 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
C^{2}{ }_{3(z)}=\text { inverse } \cdot \text { of } \cdot C^{1}{ }_{3(z)}=\left[\begin{array}{ccc}
-1 / 2 & \sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \sigma^{1}{ }_{v}=\sigma_{x z}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \sigma^{2}{ }_{v}=\sigma_{x z} \times C_{3}^{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
-1 / 2 & -\sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 / 2 & \sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \sigma^{3}{ }_{v}=\sigma_{x z} \times C_{3}^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
-1 / 2 & \sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 / 2 & -\sqrt{3} / 2 & 0 \\
-\sqrt{3} / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \\
& \begin{array}{|c|c|c|c|}
\hline C_{3 v} & \mathrm{E} & 2 C_{3} & 3 \sigma v \\
\hline \chi & 3 & 2 \cos \theta+1 & 1 \\
\hline \chi & 3 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Table 2.17 Character table for point group $C_{3 v}$

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$	Basis components		
A_{1}	1	1	1	z		$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1		R_{z}	
E	2	-1	0	(x, y)	$\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(y z, x z)$

Character of Symmetry element for NH3			
$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma \mathrm{~V}$
$\mathrm{E}=\tau_{(\mathrm{x}, \mathrm{y})}$	2	-1	0
$\mathrm{~A} 1=\tau_{(z)}$	1	1	1
$\tau_{(\mathrm{T})}$	3	0	1

Total Representation of Group $\left(\tau_{3 N}\right)$

Total representation is define as representation obtain through Translation $\left(\tau_{T}\right)$, Rotational (τ_{R}) and Vibrational ($\tau_{\text {Vib }}$).
The Total number of Modes(Degrees of freedom) $=\tau_{3 N}=3 \mathrm{~N}=\left(\tau_{T}+\tau_{R}+\tau_{\text {Vib. }}.\right)$
Where N is no. of atom in Mole.

Total Representation of Group ($\tau_{3 \mathrm{~N}}$)

Total Representation of Group ($\tau_{3 \mathrm{~N}}$)

$\Gamma_{3 \mathrm{~N}}$ Representation :For $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{PtCl}_{4}, \mathrm{PCl}_{5}, \mathrm{SF}_{6}, \mathrm{POCl}_{3}, \mathrm{CCl}_{4}$, Cis \& Trans $\mathrm{N}_{2} \mathrm{~F}_{4}, \mathrm{XeOF}_{4}$

- An alternative simple method for Total Representation.
- τ_{T} are equal for all mole. having same P.G. but $\tau_{3 \mathrm{~N}}$ are not equal for any mole. It is depends on number of atoms in mole.

$$
\tau_{3 N}=\tau_{T} \times N U S A \quad N U S A=\text { number of un-sifted atom after operation. }
$$

$\tau_{3 N}$ Representation for H 2 O mole.				
$\mathrm{C}_{2 \mathrm{v}}$	E	C 2	$\sigma \times y$	$\sigma \mathrm{yz}$
τ_{τ}	3	-1	1	1
NUSA	3	1	1	3
$\tau_{3 \mathrm{~N}}$	9	-1	1	3

	$\tau_{3 N}$ Representation for cis N 2 F 2 mole.				
	$\mathrm{C}_{2 v}$	E	C2	бxy	бyz
	$\tau_{\text {T }}$	3	-1	1	1
	NUSA	4	0	0	4
	$(\mathrm{Rr})=\tau_{3 \mathrm{~N}}$	12	0	0	4

$\tau_{3 N}$ Representation for pyridine mole.

$\mathrm{C}_{2 \mathrm{v}}$	E	C 2	$\sigma x y$	$\sigma y z$
τ_{T}	3	-1	1	1
NUSA	11	3	3	11
$(\operatorname{Rr})=\tau_{3 N}$	33	-3	3	11

$\tau_{3 \mathrm{~N}}$ Representation for Ammoniya mole.			
$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma \mathrm{v}$
$\tau_{\text {T }}$	3	0	1
NUSA	4	1	2
$(\mathrm{Rr})=\tau_{3 \mathrm{~N}}$	12	0	2

$\tau_{3 N}$ Representation for POCl3 mole.

POCl_{3}

$\mathrm{SO}_{4}{ }^{2-}$

$\mathrm{C}_{3 v}$	E	$2 \mathrm{C}_{3}$	$3 \sigma v$
τ_{T}	3	0	1
NUSA	5	2	3
$(\mathbf{R r})=\tau_{\mathbf{3 N}}$	$\mathbf{1 5}$	$\mathbf{0}$	$\mathbf{3}$

$\tau_{3 N}$ Representation for H2O2(Pln) mole.

$\mathrm{C}_{2 \mathrm{~h}}$	E	C 2	$\sigma \mathrm{~h}$	i
τ_{\top}	3	-1	1	3
NUSA	4	0	4	0
$(\operatorname{Rr})=\tau_{\mathbf{3 N}}$	$\mathbf{1 2}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{0}$

$\tau_{3 N}$ Representation for FHC=CHF mole.

$\mathrm{C}_{2 \mathrm{~h}}$	E	C 2	$\sigma \mathrm{~h}$	i
τ_{\top}	3	-1	1	3
NUSA	6	0	6	0
$(\mathrm{Rr})=\tau_{\mathbf{3 N}}$	$\mathbf{1 8}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{0}$

1,2-difluoroethylene (trans)

$\mathrm{D}_{3} \mathrm{~h}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}^{\prime}$	σ_{h}	$2 \mathrm{~S}_{3}$
τ_{T}	3	0	1	3	0
V					
NUSA	4	1	2	0	1
$\tau_{3 \mathrm{~N}}$	12	0	2	0	0

$\Gamma_{3 \mathrm{~N}}$ Representation :For $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{PtCl}_{4}, \mathrm{PCl}_{5}, \mathrm{SF}_{6}, \mathrm{POCl}_{3}, \mathrm{CCl}_{4}$, Cis \&Trans $\mathrm{N}_{2} \mathrm{~F}_{4}, \mathrm{XeOF}_{4}$

Td

Reducible and Irreducible representation.

-The various types of matrix representation are obtained for any group or mole.
${ }^{-} \tau_{3 \mathrm{~N}}$ of any mole. Give full matrix, no. of Colum and raw increases when the number of atoms are increase in mole.
-The full matrix is divided in small or block matrix, the big matrix is called reducible and small/ block matrix are called Irreducible matrix.
-The matrix can not divisible in block is called irreducible matrix and its character is called irreducible representation. (Irs)

$$
\left.C_{3(z)}^{1}=\left[\begin{array}{cccc}
-1 / 2 & -\sqrt{3} / 2 & 0 \\
\hline \sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{ll}
& T_{1}=[-1 / 2
\end{array}\right] \quad \begin{aligned}
& \\
& \\
&
\end{aligned}
$$

Simple method to determination of Irreducible representation from reducible representation.

$$
\mathrm{n}\left(\tau_{\mathrm{i}}\right)=\frac{1}{\mathbf{h}}\left[\sum_{\mathrm{i}} \mathbf{n}(\mathrm{R}) \cdot \chi_{\mathrm{IR}(R)} \cdot \chi_{R R(R)}\right]
$$

$\mathrm{n}(\tau \mathrm{i})=$ the number of Irs.
$\mathrm{h}=$ order of group
$\mathrm{n}(\mathrm{R})=$ no. symmetry element in class.
$\chi_{\mathrm{IR}}(\mathrm{R})=$ character of irreducible representation.(from C. Table)
$\chi_{R R}(R)=$ character of reducible representation.

$\tau_{3 \mathrm{~N}}$ Representation for H 2 O mole.

$\mathrm{C}_{2 v}$	E	Cn	$\sigma x y$	$\sigma y z$
$\tau_{3 N}$	9	-1	1	3

Obtained IRs using above equation are (Mulliken Symbol) $3 A_{1}+A_{2}+2 B_{1}+3 B_{2}$

$\tau_{3 \mathrm{~N}}$ Representation for H 2 O mole.

$C_{2 v}$	E	$C n$	$\sigma x y$	$\sigma y z$
$\tau_{3 N}$	9	-1	1	3
	$\mathbf{n}\left(\tau_{i}\right)=$	$\frac{\mathbf{1}}{\mathbf{h}}$	$\left[\sum_{i} \mathbf{n}(\mathbf{R}) \cdot \chi_{\text {IR }(R)} \cdot \chi_{\text {RR(R) }}\right]$	

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

No. of $\quad A_{1}=\frac{1}{4}[(1)(9)(\quad)+(1)(-1)(\quad)+(1)(1)(\quad)+(1)(3)(\quad)]$

$$
A_{2}=\frac{1}{4}[(1)(9)(\quad)+(1)(-1)(\quad)+(1)(1)(\quad)+(1)(3)(\quad)]
$$

$$
B_{1}=\frac{1}{4}[(1)(9)(\quad)+(1)(-1)(\quad)+(1)(1)(\quad)+(1)(3)(\quad)]
$$

$$
B_{2}=\frac{1}{4}[(1)(9)(\quad)+(1)(-1)(\quad)+(1)(1)(\quad)+(1)(3)(\quad)]
$$

-The sum of Character of the IRs is equal to the Character of RRs. $\left(\tau_{3 \mathrm{~N}}\right)$
-The total number of IRs are equal to the 3 N
($\mathrm{N}=$ no. of atoms in mole.)
In $\mathrm{H}_{2} \mathrm{O}$ mole. $3 \times 3=9$

$$
3 \mathrm{~A}_{1}+\mathrm{A}_{2}+2 \mathrm{~B}_{1}+3 \mathrm{~B}_{2}=9
$$

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

$\mathrm{C}_{2 v}$	E	Cn	$\sigma x y$	$\sigma y z$
$3 \mathrm{~A}_{1}$	3	3	3	3
$\mathrm{~A}_{2}$	1	1	-1	-1
$2 \mathrm{~B}_{1}$	2	-2	2	-2
$3 \mathrm{~B}_{2}$	3	-3	-3	3
$\tau_{3 \mathrm{~N}}$	9	-1	1	3

Properties of irreducible representations:

\checkmark There are many number of RRs for a P.G., but there are finite number of IRs.
\checkmark The nature and numbers of IRs are characteristics of a P.G.
\checkmark The IRs are same for different types of mole. Having same P.G.
\checkmark The number of IRs is change with the change P.G. of mole.
\checkmark The two IRs are not identical in any P.G.
\checkmark Dimensionality may be same, but the IRs differ from each other in the nature of character.

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

Rule :-1. Number of IRs

-The number of IRs are equal to the number of class of the P.G.
(The IRs are indicated by Mulliken symbols in C.T.)

Rule :-2. Dimensionality of Irs.

The sum of the squares of character of the dimensional of each of the IRs of any element of a group is equal to the order of the group h

$$
\sum n(R) \cdot x^{2}(I R s)=h
$$

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$

Rule :-3. Characters of Irs.

The sum of the squares of the characters under any IRs is equal to the order of the group h
$\sum_{I R s} n(R) \cdot \chi_{R}^{2}(I R S)=h$

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$

The character of IRs for S.E. in same class are equal.

Rule :-4. Orthogonallity rule:
The sum of the products of characters under any two IRs representations is equal to zero.

$$
\sum n(R) \cdot \chi_{i}(I R s) \chi_{j}(I R s)=0
$$

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$

STRUCTURE OF CHARACTER TABLES- its consists of six areas

Area (I) : This space in the table is used for writing Point Group.

Area (II) : All S.E. grouped into Class have been placed in this area.
Area (III) : The IRs of particular P.G. are indicated by Mulliken symbol in this area.

Area (IV) : This part of C.T. is congaing the Characters, which are the magic numbers defining the structural and spectral properties of Mole.

Area (V) : This area containing Translation and Rotational function.
x, y and z represented the translation and p -orbital vector.
Rx, Ry, Rz represented the Rotational vector.
This part introduce the IR activity of mole.
Area (VI) : This area containing following symbols which are represented vector of dorbital.

$$
x y, y z, z x, x^{2}-y^{2}, z^{2}
$$

This part is introduced the Raman activity of mole.

Mulliken symbol for IRs.

1. Character of E (identity) represented $A, B, \& E$ Mulliken symbol.

$\chi(E)$	Symbol
1	A OR B
2	E
3	T OR F
4	G

| Character of Cn is Represented | |
| :---: | :---: | :---: |
| $\chi(\mathrm{Cn})$ | Symbol |
| $+1(\mathrm{Sy})$ | A |
| -1 (USy) | B |

2. Subscripts rule.
(i) Subscripts 1 and 2 used with A, B, E..... Character of C_{2} (S. R. Axis perpendicular to P. R. A.) is represented $1 \& 2$ subscript with symbols.

$\chi\left(\mathrm{C}_{2}\right)$	Symbol
+1	$\mathrm{~A}_{1}, \mathrm{~B}_{1}, \mathrm{E}_{1}$
-1	$\mathrm{~A}_{2}, \mathrm{~B}_{2}, \mathrm{E}_{2}$

When S.R.A. are not present then use character of σv.

$\chi(\sigma v)$	Symbol
+1	A_{1}, B_{1}, E_{1}
-1	A_{2}, B_{2}, E_{2}

(ii) Subscripts ' u ' and ' g ' used with $A, B, E . . .$. Character of ' i ' (inversion center) is represented ' u ' \& ' g ' subscript with symbols.

$\chi(i)$	Symbol
+1	A_{u}, B_{u}, E_{u}
-1	A_{g}, B_{g}, E_{g}

3. Superscripts rule.
(i) Superscripts single prime(') and double prime(") used with A, B, E.....

Character of ' σ ' (horizontal plane) is represented (') \& (") superscript with symbols.

$\chi($ oh $)$	Symbol
+1	$A^{\prime}: B^{\prime}: E^{\prime}$
-1	$A^{\prime \prime}: B^{\prime \prime}: E^{\prime \prime}$

(ii) Many P.G. containing both S.E. oh and i (inversion center) then use both subscript (u and g) and superscript (' and ")

$\chi(i)$	$\chi(\sigma h)$	Symbol
+1	+1	$A^{\prime} u: B^{\prime} u: E^{\prime} u$
-1	-1	$A^{\prime \prime} g: B^{\prime \prime} g: E^{\prime \prime} g$

4. Multi dimensional representations.
$\Sigma, \pi, \Delta, \phi$ symbols are used for higher symmetry of mole. Which is very difficult to introduce the symmetry of molecules.

$D_{\alpha \mathrm{h}}$	E	$2 C_{\infty}^{\phi}$	\ldots	$\infty \sigma_{\mathrm{v}}$	i	$2 S_{\infty}^{\phi}$	\ldots	∞C_{2}	
Σ_{g}^{+}	1	1	\ldots	1	1	1	\ldots	1	
Σ_{g}^{-}	1	1	\ldots	-1	1	1	\ldots	-1	R_{z}
Π_{g}	2	$2 \cos \phi$	\ldots	0	2	$-2 \cos \phi$	\ldots	0	$\left(R_{x}, R_{y}\right)$
$\Delta_{g}+y^{2}, z^{2}$	$(x z, y z)$								
	2	$2 \cos 2 \phi$	\ldots	0	2	$2 \cos 2 \phi$	\ldots	0	
\ldots									
Σ_{u}^{+}	1	1	\ldots	1	-1	-1	\ldots	-1	z
$\left.\Sigma_{u}^{-}-y^{2}, 2 x y\right)$									
Π_{u}	1	1	\ldots	-1	-1	-1	\ldots	1	
Δ_{u}	2	$2 \cos \phi$	\ldots	0	-2	$2 \cos \phi$	\ldots	0	(x, y)
\ldots									

Constriction of Character Table for $\mathrm{C}_{3} \vee$ P.G. using properties of IRs

$C_{3 v} \Rightarrow E ; C_{3(z)}^{1} ; C_{3(z)}^{2} ; \sigma_{v}^{1}\left(\sigma_{x z}\right) ; \sigma_{v}^{2} ; \sigma_{v}^{3}$
$C_{3 v} \Longrightarrow E ; 2 C_{3}^{1} ; 3 \sigma_{v}$
Order of the C3v P.G. = 6
Class of the C3v P.G. $=3$
STEP:-1,
The number of irreducible representations is equal to the number of classes in the group.

In this P.G. there are three class the IRs are $\tau_{1} ; \tau_{2 ;} \tau_{3}$

$\mathrm{C}_{3} \mathrm{~V}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$
τ_{1}			
τ_{2}			
τ_{3}			

STEP:-2,

For any P.G., character of any one IRs are identical for all symmetry element.

$\mathrm{C}_{3} \mathrm{v}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{v}$
τ_{1}	1	1	1
τ_{2}	x		
τ_{3}	y		

STEP:-3,
Character of E for all IRs are symmetrical.
For E, The sum of the squares of the dimensions of the characters of Irs is equal to the order of the group h.

$$
\begin{aligned}
& \sum n(R) \cdot \chi^{2}(I R s)=h \\
& \left\lfloor 1(1)^{2}+1(x)^{2}+1(y)^{2}\right\rfloor=6
\end{aligned}
$$

Take $x=1$ and $y=2$, for solve this equation

$\mathrm{C}_{3} \mathrm{v}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{v}$
τ_{1}	1	1	1
τ_{2}	1		
τ_{3}	2		

STEP:-4,
The sum of the squares of the characters under any Irs is equal to the order of the group h.

The characters of all operations in the same class are equal in each given irreducible (or reducible) representation.

$$
\sum_{I R s} n(R) \cdot \chi_{R}^{2}(I R s)=h
$$

$\mathrm{C}_{3} \mathrm{v}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{v}$
τ_{1}	1	1	1
τ_{2}	1	X	Y
τ_{3}	2		

$$
\begin{aligned}
& \left\lfloor 1(1)^{2}+2(1)^{2}+3(1)^{2}\right\rfloor=6 \\
& \left\lfloor 1(1)^{2}+2(x)^{2}+3(y)^{2}\right\rfloor=6
\end{aligned}
$$

STEP:-4, Orthogonallity rule
The sum of the products of characters under any two Irs representations is equal to zero.

$$
\begin{gathered}
\sum n(R) \cdot \mathcal{X}_{i}(I R s) \mathcal{X}_{j}(I R s)=0 \\
{[1(1)(1)+2(1)(x)+3(1)(y)]=0}
\end{gathered}
$$

$\sum n(R) \cdot \chi_{i}(I R s) \chi_{j}(I R s)=0$

$\mathrm{C}_{3} \mathrm{~V}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{v}$	$\tau_{2} \times \tau_{3}=[1(1)(2)+2(1)(x)+3(-1)(y)]=0$
τ_{1}	1	1	1	$2+2 x-3 y=0$
τ_{2}	1	1	-1	$2 x-3 y=-2$

$$
\tau_{1} \times \tau_{3}=[1(1)(2)+2(1)(x)+3(1)(y)]=0 \quad 2+2 x+3 y=0 \quad 2 x+3 y=-2
$$

Solving both equation, we get $x=-1$, and $y=0$

Mulliken Sym.	$\mathrm{C}_{3} \mathrm{~V}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$
A_{1}	τ_{1}	1	1	1
$\mathrm{~A}_{2}$	τ_{2}	1	1	-1
E	τ_{3}	2	-1	0

SYMMETRY OF NORMAL MODES OF MOLECULES

Application of symmetry to molecular vibrations, interpretation of IR and Raman activity.

The Total number of $\operatorname{Modes}\left(\right.$ Degrees of freedom) $=\tau_{3 N}=\mathbf{3 N}=\left(\tau_{T}+\tau_{R}+\tau_{\text {vib. }}\right)$ Where N is no. of atom in Mole.

Molecule	Translation	Rotational modes $\left(\tau_{T}\right)$	Vibrational modes $\left(\tau_{\text {vib }}\right)$		
			Starching	Bending	Total
Linear	3		$\mathrm{~N}-1$	$2 N-4$	$3 N-5$
Non-linear	3	3	$\mathrm{~N}-1$	$2 N-5$	$3 N-6$

There are two convenient method for determine the normal modes of mole.

1. Cartesian coordinate method.
2. Internal coordinate method.

These method deal how the symmetry of normal modes arising and their IR and

Raman spectral activity.

SYMMETRY OF NORMAL MODES OF $\mathrm{H}_{2} \mathrm{O}$ MOLEC ULES

1. Cartesian coordinate Method.
2. P.G. and Symmetry elements $=C_{2 v} \Longrightarrow E ; C_{2(z)} ; \sigma_{(x y)} ; \sigma_{(y z)}$
3. Number of atoms $(N)=3$
4. Order of Group $=4$
5. Class of Group $=4$
6. Modes in Molecules (degree of freedom)

Molecule $(H 2 O)$	Translation modes $\left(\tau_{\mathrm{T}}\right)$	Rotational modes $\left(\tau_{\mathrm{R}}\right)$		Vibrational modes $\left(\tau_{\text {Vib }}\right)$		
			Starching	Bending	Total	
Non-linear	3	3	$\mathrm{~N}-1$	$2 \mathrm{~N}-5$	$3 \mathrm{~N}-6$	
$3 \mathrm{~N}=9$	3	3	2	1	3	

SYMMETRY OF NORMAL MODES OF $\mathrm{H}_{2} \mathrm{O}$ MOLEC ULES

6. $\Gamma_{3 N}$ Representation $=$ Total modes

$C_{2 v}$	E	$C 2$	$\sigma x y$	$\sigma y z$	Number of Modes
$\chi=\Gamma_{T}$	3	-1	1	1	$\mathrm{~A} 1+\mathrm{B} 1+\mathrm{B} 2=3$
NUSA	3	1	1	3	
$\Gamma_{3 N}$	9	-1	1	3	$3 \mathrm{~A} 1+\mathrm{A} 2+2 \mathrm{~B} 1+3 \mathrm{~B} 2=9$

Total number of modes can be obtained using Standard Reduction formula.

$$
\mathbf{n}\left(\tau_{i}\right)=\frac{1}{\mathbf{h}}\left[\sum_{\mathbf{i}} \mathbf{n}(\mathbf{R}) \cdot \chi_{\mathrm{IR}(\mathrm{R})} \cdot \chi_{\mathrm{RR}(\mathrm{R})}\right]
$$

7. Translation modes Γ_{T} And Rotational modes Γ_{R} Obtain from Character Table.

$$
\begin{array}{ll}
\Gamma_{T}=A 1+B 1+B 2=3 & \text { (using } x, y \text { and } z \text { symbol.) } \\
\Gamma_{R}=A 2+B 1+B 2=3 & \text { (using Rx, Ry and Rz symbol) }
\end{array}
$$

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

8. Vibrational modes modes $\Gamma_{\text {Vib }}$ Obtain through

$$
\begin{aligned}
& \Gamma_{3 N}=\Gamma_{T}+\Gamma_{\mathrm{R}}+\Gamma_{\text {vib. }} \quad \quad \Gamma_{\text {Vib. }}=\Gamma_{3 N}-\left(\Gamma_{\mathrm{T}}+\Gamma_{\mathrm{R}}\right) \\
& \Gamma_{\text {Vib. }}=3 \mathrm{~A} 1+\mathrm{A} 2+2 \mathrm{~B} 1+3 \mathrm{~B} 2-(\mathrm{A} 1+\mathrm{B} 1+\mathrm{B} 2+\mathrm{A} 2+\mathrm{B} 1+\mathrm{B} 2) \\
& \Gamma_{\text {Vib. }}=2 \mathrm{~A} 1+\mathrm{B} 2=3
\end{aligned}
$$

2. Internal Coordinate Method.

1. Consideration of bond vector and bond angle vector for mole. Number of bond vector $=2(\mathrm{O}-\mathrm{H}$ bond $)=\mathrm{r} 1$ and r 2 Number of bond angle $=1(\mathrm{H}-\mathrm{O}-\mathrm{H})=\alpha$ Total number of internal coordinates $=3$

2. Workout symmetry operation on mole. In terms of above Internal modes and determine the character.

$\mathrm{C}_{2 \mathrm{v}}$	E	Cn	$\sigma \mathrm{xy}$	$\sigma \mathrm{yz}$	Number of Modes
$\Gamma_{\text {Stre. }}=\Gamma_{\mathrm{r} 1+} \Gamma_{\mathrm{r} 2}$	2	0	0	2	$\mathrm{~A} 1+\mathrm{B} 2=2$
$\Gamma_{\text {bend. }}=\Gamma_{\alpha}$	1	1	1	1	$\mathrm{~A} 1=1$
$\Gamma_{\text {vib. }}$	3	1	1	3	$2 \mathrm{~A} 1+\mathrm{B} 2=3$

Note: when position of vector is change then character is $=0$
when change of direction of vector then character is $=-1$ when nothing change in position and direction then character is $=1$
3. Assignment of Normal Vibrational modes. the corresponding normal modes for mole are given following fig.

Symmetrical stretching A1 (v1)

Symmetrical bending
A1 (v3)

Unsymmetrical stretching B2 (u2)
4. IR and Raman spectral activity.

The IR frequency associated to the vibrational mode are define as
IRs is correlated with the x, y, z then IRs is IR active.
IRs is correlated with the $x y, y z, z x, x 2-y 2$ and $z 2$ then IRs is Raman active.

5. Determination of IR Frequency

$$
\begin{aligned}
& \nu_{\text {stre. }} \succ v_{\text {bend }} \\
& \nu_{\text {unsym. }} \succ v_{\text {sy. }} \\
& \nu_{\text {in.plane. }} \succ v_{O O P .} \\
& \nu_{D B} \succ v_{S B}
\end{aligned}
$$

| Vibrational
 mode (Mulliken
 sym.) | Stretching Or
 Bending | Symmetry of
 Mode | IR Active | Raman
 Active | IR frequency
 $\left(\mathrm{cm}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | Stretching | Symmetrical | Yes | Yes | $U_{1}=3642$ |
| B2 | Stretching | unsymmetrical | Yes | Yes | $U_{2}=3756$ |
| A1 | Bending | Symmetrical | Yes | Yes | $U_{3}=1595$ |

SYMMETRY OF NORMAL MODES OF ClF_{3} (T-Shaped) MOLEC ULES

1. Cartesian coordinate Method.
2. P.G. and Symmetry elements $=$

$$
C_{2 v} \Longrightarrow E ; C_{2(z)} ; \sigma_{(x y)} ; \sigma_{(y z)}
$$

2. Number of atoms $=(\mathrm{N})=4$
3. Order of Group $=4$
4. Class of Group $=4$
5. Modes in Molecules (degree of freedom)

Molecule (CIF3)	Translation modes $\left(\tau_{T}\right)$	Rotational modes $\left(\tau_{R}\right)$	Vibrational modes $\left(\tau_{\text {vib }}\right)$		
		Starching	Bending	Total	
Non-linear	3	3	$\mathrm{~N}-1$	$2 N-5$	$3 N-6$
$3 N=12$	3	3	3	3	6

SYMMETRY OF NORMAL MODES OF ClF_{3} (T-Shaped) MOLEC ULES

6. $\Gamma_{3 N}$ Representation = total modes

$$
C_{2 v} \Longrightarrow E ; C_{2(z)} ; \sigma_{(x y)} ; \sigma_{(y z)}
$$

$\mathrm{C}_{2 v}$	E	Cn	$\sigma x y$	$\sigma y z$	Number of Modes
$\chi=\Gamma_{T}$	3	-1	1	1	$\mathrm{~A} 1+\mathrm{B} 1+\mathrm{B} 2=3$
NUSA	4	2	2	4	
$\Gamma_{3 N}$	12	-2	2	4	$4 \mathrm{~A} 1+\mathrm{A} 2+3 \mathrm{~B} 1+4 \mathrm{~B} 2=12$

Total number of modes can be obtained using Standard Reduction formula.

$$
\mathrm{n}\left(\tau_{\mathrm{i}}\right)=\frac{1}{\mathbf{h}}\left[\sum_{\mathrm{i}} \mathrm{n}(\mathrm{R}) \cdot \chi_{\mathrm{IR}(\mathrm{R})} \cdot \chi_{\mathrm{RR}(\mathrm{R})}\right]
$$

7. Translation modes Γ_{T} And Rotational modes Γ_{R} Obtain from Character Table.

$$
\begin{array}{ll}
\Gamma_{T}=A 1+B 1+B 2=3 & \text { (using } x, y \text { and } z \text { symbol.) } \\
\Gamma_{R}=A 2+B 1+B 2=3 & \text { (using } R x, R y \text { and } R z \text { symbol) }
\end{array}
$$

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

8. Vibretional modes modes Γ_{Vib} Obtain through

$$
\begin{gathered}
\Gamma_{3 N}=\Gamma_{\mathrm{T}}+\Gamma_{\mathrm{R}}+\Gamma_{\text {vib. }} \quad \Gamma_{\text {Vib. }}=\Gamma_{3 \mathrm{~N}}-\left(\Gamma_{\mathrm{T}}+\Gamma_{\mathrm{R}}\right) \\
\Gamma_{\text {Vib. }}=4 \mathrm{~A} 1+\mathrm{A} 2+3 \mathrm{~B} 1+4 \mathrm{~B} 2-(\mathrm{A} 1+\mathrm{B} 1+\mathrm{B} 2+\mathrm{A} 2+\mathrm{B} 1+\mathrm{B} 2) \\
\Gamma_{\text {vib. }}=3 \mathrm{~A} 1+\mathrm{B} 1+2 \mathrm{~B} 2=6
\end{gathered}
$$

2. Internal Coordinate Method.

1. Consideration of bond vector and bond angle vector for mole.

Number of bond vector $=3(\mathrm{O}-\mathrm{H}$ bond $)=\mathrm{r} 1 ; \mathrm{r} 2$ and r 3
Number of bond angle $=3$ [$\alpha 1 ; \alpha 2$ (in plane) and $\alpha 3$ (out of plane)]
Total number of internal coordinates $=6$

2. Workout symmetry operation on mole. In terms of above Internal modes and determine the character.

$\mathrm{C}_{2 \mathrm{v}}$	E	Cn	$\sigma \mathrm{xy}$	$\sigma \mathrm{yz}$	Number of Modes
$\Gamma_{\text {Stre. }}=\Gamma_{\mathrm{r} 1}+\Gamma_{\mathrm{r} 2}+\Gamma_{\mathrm{r} 3}$	3	1	1	3	$2 \mathrm{~A} 1+\mathrm{B} 2=3$
$\Gamma_{\text {bend. }}=\Gamma_{\alpha 1}+\Gamma_{\alpha 2}$	2	0	0	2	$\mathrm{~A} 1+\mathrm{B} 2=2$
$\Gamma_{\text {bend. }}=\Gamma_{\alpha 3}(\mathrm{OOP})$	1	-1	1	-1	$\mathrm{~B} 1=1$
$\Gamma_{\text {vib. }}$	6	0	2	4	$3 \mathrm{~A} 1+\mathrm{B} 1+2 \mathrm{~B} 2=6$

Note: when position of vector is change then character is $=0$ when change of direction of vector then character is $=-1$ when nothing change in position and direction then character is $=1$
3. Assignment of Normal Vibrational modes.

The corresponding normal modes for mole are given following fig.

 A1 $\left(\mathrm{V}_{2}\right)$

B2 $\left(v_{3}\right)$

4. IR and Raman spectral activity.

The IR frequency associated to the vibrational mode are define as
IRs is correlated with the x, y, z then IRs is IR active.
IRs is correlated with the $x y, y z, z x, x 2-y 2$ and $z 2$ then IRs is Raman active.

$$
\begin{aligned}
& v_{\text {stre. }} \succ v_{\text {bend. }} \\
& v_{\text {unsym. }} \succ v_{\text {sy. }} \\
& v_{\text {in.plane. }} \succ v_{O O P .} . \\
& v_{D B} \succ v_{S B}
\end{aligned}
$$

\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Vibrational } \\
\text { mode (Mulliken } \\
\text { sym.) }\end{array} & \begin{array}{c}\text { Stretching Or } \\
\text { Bending }\end{array} & \begin{array}{c}\text { Symmetry of } \\
\text { Mode }\end{array}
$$ \& IR Active \& Raman

Active\end{array}\right]\)| IR frequency |
| :---: |
| $\left(\mathrm{cm}^{-1}\right)$ |

SYMMETRY OF NORMAL MODES OF NH_{3} MOLEC ULES

1. Cartesian coordinate Method.
2. P.G. and Symmetry elements $=$

$$
C_{3 v} \Longrightarrow E ; 2 C_{3}^{1} ; 3 \sigma_{v}
$$

2. Number of atoms $=4$
3. Order of Group $=6$
4. Class of Group $=3$
5. Total number of modes (Nonlinear Mole.) $=3 \mathrm{~N}=3(4)=12$

Molecule $\mathbf{(H 2 O)}$	Translation modes $\left(\tau_{T}\right)$	Rotational modes $\left(\tau_{R}\right)$	Vibrational modes $\left(\tau_{\text {vib }}\right)$		
		Starching	Bending	Total	
Non-linear	3	3	$\mathrm{~N}-1$	$2 N-5$	$3 N-6$
$3 \mathrm{~N}=12$	3	3	3	3	6

$\mathrm{C}_{3} \mathrm{v}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{v}$	Number of Modes
$\chi=\Gamma_{T}$	3	0	1	$\mathrm{~A} 1+\mathrm{E}=3$
NUSA	4	1	2	
$\Gamma_{3 \mathrm{~N}}$	12	0	2	$3 \mathrm{~A} 1+\mathrm{A} 2+4 \mathrm{E}$ (doublet) $=12$

Total number of modes can be obtained using Standard Reduction formula.

$$
\mathbf{n}\left(\tau_{i}\right)=\frac{1}{\mathbf{h}}\left[\sum_{i} \mathbf{n}(\mathbf{R}) \cdot \chi_{I R(R)} \cdot \chi_{R R(R)}\right]
$$

8. Translation modes Γ_{T} And Rotational modes Γ_{R} Obtain from Character Table.

$$
\begin{array}{ll}
\Gamma_{T}=A 1+E(d)=3 & \text { (using } x, y \text { and } z \text { symbol. }) \\
\Gamma_{R}=A 2+E(d)=3 & \text { (using } R x, R y \text { and Rz symbol) }
\end{array}
$$

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{*}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$

9. Vibrational modes modes $\Gamma_{\text {Vib }}$ Obtain through

$$
\begin{aligned}
& \Gamma_{3 N}=\Gamma_{T}+\Gamma_{R}+\Gamma_{\text {Vib. }} \quad \Gamma_{\text {Vib. }}=\Gamma_{3 N}-\left(\Gamma_{T}+\Gamma_{R}\right) \\
& \Gamma_{\text {Vib. }}=3 \mathrm{~A} 1+\mathrm{A} 2+4 \mathrm{E}-(\mathrm{A} 1+\mathrm{E}+\mathrm{A} 2+\mathrm{E}) \\
& \Gamma_{\text {vib. }}=2 \mathrm{~A} 1+2 \mathrm{E}(d)=6
\end{aligned}
$$

2. Internal Coordinate Method.

1. Consideration of bond vector and bond angle vector for mole.

Number of bond vector $=3$ ($\mathrm{N}-\mathrm{H}$ bond) $=\mathrm{r} 1$; r 2 and r 3
Number of bond angle $=3$ [$\alpha 1 ; \alpha 2 ; \alpha 3$] Total number of internal coordinates $=6$

2. Workout symmetry operation on mole. In terms of above Internal modes and determine the character.

$\mathrm{C}_{3} \mathrm{v}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$	Number of Modes
$\Gamma_{\text {Stre. }}=\Gamma_{\mathrm{r} 1}+\Gamma_{\mathrm{r} 2}+\Gamma_{\mathrm{r} 3}$	3	0	1	$\mathrm{~A} 1+\mathrm{E}(d)=3$
$\Gamma_{\text {bend. }}=\Gamma_{\alpha 1}+\Gamma_{\alpha 2}+\Gamma_{\alpha 3}$	3	0	1	$\mathrm{~A} 1+\mathrm{E}(d)=3$
$\Gamma_{\text {vib. }}$	6	0	2	$2 \mathrm{~A} 1+2 \mathrm{E}=6$

Note: when position of vector is change then character is $=0$
when change of direction of vector then character is $=-1$
when nothing change in position and direction then character is =1

3. Assignment of Normal Vibrational modes.

The corresponding normal modes for mole are given following fig.

Symmetrical stretching
A1 $\left(v_{1}\right)$

Symmetrical Bending A1 $\left(v_{3}\right)$

Unsymmetrical stretching
$E(d)\left(v_{2}\right)$

UnSymmetrical Bending
$E d\left(v_{4}\right)$

Unsymmetrical stretching
E (d) $\left(v_{2}\right)$

UnSymmetrical Bending
$\mathrm{E} d\left(v_{4}\right)$

4. IR and Raman spectral activity.

The IR frequency associated to the vibrational mode are define as
IRs is correlated with the x, y, z then IRs is IR active.
IRs is correlated with the $\mathrm{xy}, \mathrm{yz}, \mathrm{zx}, \mathrm{x} 2-\mathrm{y} 2$ and z 2 then IRs is Raman active.

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{*}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$

5. Determination of IR Frequency

Vibrational mode (Mulliken sym.)	Stretching Or Bending	Symmetry of Mode	IR Active	Raman Active	IR frequency $\left(\mathrm{cm}^{-1}\right)$
A1	Stretching	Symmetrical	Yes	Yes	$3534 \mathrm{~cm} \mathrm{v}_{1}$
E	Stretching (d)	unsymmetrical	Yes	Yes	$3464 \mathrm{~cm} \mathrm{v}_{2 \text { (d) }}$
A1	Bending	Symmetrical	Yes	Yes	$1139 \mathrm{~cm} \mathrm{v}_{3}$
E	Bending (d)	unsymmetrical	Yes	Yes	$1765 \mathrm{~cm} \mathrm{v}_{4 \text { (d) }}$

AMMONIA
INFRARED SPECTRUM

NIST Chemistry WebBook (https://webbook.nist.gov/chemistry)

Application of Group Theory Determination of Hybridization of molecules.

Hybridization schemes for sigma-orbitals :
AB_{3} : planar triangle (BF3) and trigonal pyramidal (NH3)
AB_{4} : Tetrahedral (CH4) and Planar (PtCl4)
AB_{5} : Trigonal bipyramidal (PC15) and square pyramidal (IF5)
AB_{6} : Octahedral (SF6)

Hybridization schemes for pi-orbitals :
AB_{3} : planar triangle (BF3)
AB_{6} : Octahedral (SF6)

Hybridization schemes for sigma-orbitals : $\mathrm{AB}_{3}:$ planar triangle $\left(\mathrm{BF}_{3}\right)$

$$
B_{(z=5)}: 1 s^{2}, 2 s^{2}, 2 p^{1} \quad B_{(z=5)}^{*}: \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow
$$

Reducible Representation of the Sigma bonding(Sigma Orbitals)

Decide the number of sigma bond unchanged during operation.

$D_{3} h$	E	$2 C_{3}$	$3 C_{2}^{\prime}$	σ_{h}	$2 S_{3}$	$3 \sigma_{v}$
$\Gamma_{R R}$	3	0	1	3	0	1

$\mathbf{D}_{3 \mathrm{~h}}$	\mathbf{E}	$\mathbf{2} \mathbf{C}_{\mathbf{3}}$	$\mathbf{3} \mathbf{C}_{\mathbf{2}}^{\prime}$	$\mathbf{\sigma}_{\mathrm{h}}$	$\mathbf{2} \mathbf{S}_{\mathbf{3}} \mathbf{3} \mathbf{\sigma}_{\mathrm{v}}$			
A_{1}^{\prime}	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}^{\prime}$	1	1	-1	1	1	-1	R_{z}	
E^{\prime}	2	-1	0	2	-1	0	(x, y)	$\left(x^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
$\mathrm{A}_{1}^{\prime \prime}$	1	1	1	-1	-1	-1		
$\mathrm{~A}_{2}^{\prime \prime}$	1	1	-1	-1	-1	1	z	
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{v}}\right)$	$(x z, y z)$

$$
\mathrm{n}\left(\tau_{\mathrm{i}}\right)=\frac{1}{\mathbf{h}}\left[\sum_{\mathrm{i}} \mathrm{n}(\mathrm{R}) \cdot \chi_{\mathrm{IR}(\mathrm{R})} \cdot \chi_{\mathrm{RR}(\mathrm{R})}\right]
$$

$\Gamma_{\text {hybrid orbitals: }} A_{1}^{\prime}(s)+E^{\prime}(d)$ [total 3 H.Os are participate to make sigma bond]
A_{1} : Represent Hybrid orbitals of ' S ' and $d z 2$
E' : Represent Hybrid orbitals are Px; Py and dx2-y2; dxy
Possible set of Hybridization (1) SP2 (2) Sd2 (3)dP2 (4) d3

Borane atom has only ' p ' orbitals so the hybridization in BF3 is Sp2

$\mathbf{D}_{\mathbf{3 h}}$	\mathbf{E}	$\mathbf{2} \mathbf{C}_{\mathbf{3}}$	$\mathbf{3} \mathbf{C}_{\mathbf{2}}{ }^{\prime}$	$\boldsymbol{\sigma}_{\mathrm{h}}$	$\mathbf{2} \mathbf{S}_{\mathbf{3}} \mathbf{3} \boldsymbol{\sigma}_{\mathrm{v}}$			
$\mathrm{A}_{1}{ }^{\prime}$	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1	R_{z}	
E^{\prime}	2	-1	0	2	-1	0	(x, y)	$\left(x^{2}-y^{2}, x y\right)$
$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1		
$\mathrm{~A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{v}}\right)$	$(x z, y z)$

Hybridization schemes for sigma-orbitals : AB_{3} : Pyramidal $\left(\mathrm{NH}_{3}\right)$

$$
N_{(z=7)}: 1 s^{2}, 2 s^{2}, 2 p^{3}
$$

Decide the number of sigma bond unchanged during operation.
Reducible Representation of the Sigma bonding(Sigma Orbitals)

$$
\mathrm{n}\left(\tau_{\mathrm{i}}\right)=\frac{1}{\mathrm{~h}}\left[\sum_{\mathrm{i}} \mathrm{n}(\mathrm{R}) \cdot \chi_{\mathrm{IR}(\mathrm{R})} \cdot \chi_{\mathrm{RR}(\mathrm{R})}\right]
$$

$\Gamma_{\text {hybrid orbitals }}: 2 \mathrm{~A}_{1}(\mathrm{~s})+\mathrm{E}(\mathrm{d})$ [total $4 \mathrm{H} . \mathrm{Os}$ are participate to make sigma bond]
A_{1} : Represent Hybrid orbitals of ' S ' and Pz and $\mathrm{dz2}$
E : Represent Hybrid orbitals are ($\mathrm{Px} ; \mathrm{Py}$) and ($\mathrm{dx} 2-\mathrm{y} 2$; dxy) and (dyz; dzx)
Possible set of Hybridization (1) SP3 (2) Sdp2 (3)pdP2 or dp3 (4) sd3 (5) spd2
Nitrogen atom has only ' p ' orbitals so the hybridization in NH3 is Sp3

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$

Hybridization schemes for sigma-orbitals : AB_{4} : Tetrahedral (CH4)

$$
C_{(z=6)}: 1 s^{2}, 2 s^{2}, 2 p^{2}
$$

Decide the number of sigma bond unchanged during operation.

Reducible Representation of the Sigma bonding(Sigma Orbitals)

Td	E	$8 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	$6 \mathrm{~S}_{4}$	$6 \sigma_{\mathrm{v}}$
Γ_{RR}	4	1	0	0	2

Table 1: Character table for T_{d} point group

T_{d}	E	$8 C_{3}$	$3 C_{2}$	$6 S_{4}$	$6 \sigma_{d}$		
A_{1}	1	1	1	1	1		$x^{2}+y^{2}+z^{2}$
A_{2}	1	1	1	-1	-1		
E	2	-1	2	0	0		$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$
T_{1}	3	0	-1	1	-1	$\left(R_{x}, R_{y}, R_{z}\right)$	
T_{2}	3	0	-1	-1	1	(x, y, z)	$(x z, y z, x y)$

$$
\mathrm{n}\left(\tau_{\mathrm{i}}\right)=\frac{1}{\mathrm{~h}}\left[\sum_{\mathrm{i}} \mathrm{n}(\mathrm{R}) \cdot \chi_{\mathrm{IR}(\mathrm{R})} \cdot \chi_{\mathrm{RR}(\mathrm{R})}\right]
$$

$\Gamma_{\text {hybrid orbitals: }}: A_{1}(\mathrm{~s})+\mathrm{T}_{2}(\mathrm{t})$ [total 4 H.Os are participate to make sigma bond]
A_{1} : Represent Hybrid orbitals is ' S '
T_{2} : Represent Hybrid orbitals are (Px; Py; pz) and (dxy;dyz; dzx)
Possible set of Hybridization (1) SP3 (2) Sd3
Carbone atom has only ' p ' orbitals so the hybridization in CH 4 is Sp 3

Table 1: Character table for T_{d} point group							
T_{d}	E	$8 C_{3}$	$3 C_{2}$	$6 S_{4}$	$6 \sigma_{d}$		
A_{1}	1	1	1	1	1		$x^{2}+y^{2}+z^{2}$
A_{2}	1	1	1	-1	-1		
E	2	-1	2	0	0		$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$
T_{1}	3	0	-1	1	-1	$\left(R_{x}, R_{y}, R_{z}\right)$	
T_{2}	3	0	-1	-1	1	(x, y, z)	$(x z, y z, x y)$

Hybridization schemes for sigma-orbitals : AB_{4} : Square planer (PtCl4)

$\mathrm{Pt}(\mathrm{Z}=78) \Rightarrow 5 \mathrm{~d}^{8} 6 \mathrm{~s}^{2}, \mathrm{Pt}^{2+} \Rightarrow 5 \mathrm{~d}^{8}$.

	4	0	0	2	0	0	0	4	2	0		
$\mathrm{D}_{4 \mathrm{~h}}$	E	2C4	C_{2}	2C ${ }_{2}$ '	2C2"	i	2S ${ }_{4}$	$\sigma_{\text {h }}$	$2 \sigma_{\mathrm{v}}$	$2 \sigma_{\text {d }}$		
$\mathbf{A}_{\text {1g }}$	1	1	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{A}_{\mathbf{2 g}}$	1	1	1	-1	-1	1	1	1	-1	-1	$\mathrm{R}_{\mathbf{z}}$	
$\mathbf{B}_{1 \mathrm{~g}}$	1	-1	1	1	-1	1	-1	1	1	-1		$\mathrm{x}^{2}-\mathrm{y}^{2}$
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	1	-1	1	-1	1		xy
$\mathbf{E}_{\mathbf{g}}$	2	0	-2	0	0	2	0	-2	0	0	($\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$)	(xz, yz)
$\mathrm{A}_{1 \mathrm{u}}$	1	1	1	1	1	-1	-1	-1	-1	-1		
$\mathrm{A}_{\mathbf{2}}$	1	1	1	-1	-1	-1	-1	-1	1	1	z	
B_{14}	1	-1	1	1	-1	-1	1	-1	-1	1		
$\mathrm{B}_{2}{ }^{\text {u }}$	1	-1	1	-1	1	-1	1	-1	1	-1		
\mathbf{E}_{u}	2	0	-2	0	0	-2	0	2	0	0	(x, y)	

$$
\mathrm{n}\left(\tau_{\mathrm{i}}\right)=\frac{1}{\mathbf{h}}\left[\sum_{\mathrm{i}} \mathrm{n}(\mathrm{R}) \cdot \chi_{\mathrm{IR}(\mathrm{R})} \cdot \chi_{\mathrm{RR}(\mathrm{R})}\right]
$$

$\Gamma_{\text {hybrid orbitals: }}: \mathrm{A}_{1 \mathrm{~g}}(\mathrm{~s})+\mathrm{B}_{1 \mathrm{~g}}(\mathrm{~s})+\mathrm{E}_{\mathrm{u}}(\mathrm{d})$ [total 4 H.Os are participate to make sigma bond]
$\mathrm{A}_{1 \mathrm{~g}}$: Represent Hybrid orbitals is ' S ' and dz2
$\mathrm{B}_{1 \mathrm{~g}}$: Represent Hybrid orbitals is $\mathrm{dx} 2-\mathrm{y} 2$
E_{u} : Represent Hybrid orbitals are (Px; Py)

Possible set of Hybridization (1) SdP2 OR dsp2 (2) d2p2

$\mathrm{D}_{4 \mathrm{~h}}$	E	$2 \mathrm{C}_{4}$	C_{2}	$2 \mathrm{C}_{2}{ }^{\text {, }}$	$2 \mathrm{C}_{2}$ "	i	$2 \mathrm{~S}_{4}$	$\sigma_{\text {h }}$	$2 \sigma_{\mathrm{v}}$	$2 \sigma_{\text {d }}$		
$\mathrm{A}_{1 \mathrm{~g}}$	1	1	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{A}_{2} \mathrm{~g}^{\text {g }}$	1	1	1	-1	-1	1	1	1	-1	-1	R_{2}	
$\mathrm{B}_{1 \mathrm{~g}}$	1	-1	1	1	-1	1	-1	1	1	-1		$\mathrm{x}^{2}-\mathrm{y}^{2}$
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	1	-1	1	-1	1		xy
\mathbf{E}_{g}	2	0	-2	0	0	2	0	-2	0	0	($\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$)	(xz, yz)
$\mathrm{A}_{1 \mathrm{u}}$	1	1	1	1	1	-1	-1	-1	-1	-1		
$\mathrm{A}_{2 \mathrm{u}}$	1	1	1	-1	-1	-1	-1	-1	1	1	z	
B_{14}	1	-1	1	1	-1	-1	1	-1	-1	1		
B_{24}	1	-1	1	-1	1	-1	1	-1	1	-1		
E_{u}	2	0	-2	0	0	-2	0	2	0	0	(x, y)	

Hybridization schemes for sigma-orbitals : AB_{5} : Trigonal pyramidal (PCI5)

$\Gamma_{\text {hybrid orbitals: }} 2 \mathrm{~A}_{1}^{\prime}(\mathrm{s})+\mathrm{A}^{\prime \prime}{ }_{2}(\mathrm{~s})+\mathrm{E}^{\prime}(\mathrm{d})$ [total 5 H.Os are participate to make sigma bond]
A_{1}^{\prime} : Represent Hybrid orbitals is ' S ' and dz2
$\mathrm{A}^{\prime \prime}{ }_{2}$: Represent Hybrid orbitals is Pz
E^{\prime} : Represent Hybrid orbitals are (Px; Py) and(dx2-y2, dxz)

Possible set of Hybridization (1) SdP3 OR sp3d (2) sd3p

Hybridization schemes for sigma-orbitals :AB ${ }_{5}$: Squar pyramidal (IF5)

```
\[
\mathrm{I}(\mathrm{z}=15)
\]
```

	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{2}$	$\mathrm{C4v}$		
$C_{4 v}$	E	$2 C_{4}$	C_{2}	$2 \sigma_{v}$	$2 \sigma_{d}$			
A_{1}	1	1	1	1	1	z		$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	1	-1	-1	R_{z}		
B_{1}	1	-1	1	1	-1		$x^{2}-y^{2}$	
B_{2}	1	-1	1	-1	1		$x y$	
E	2	0	-2	0	0	$(x, y)\left(R_{x}, R_{y}\right)$	$(x z, y z)$	

$$
\mathrm{n}\left(\tau_{\mathrm{i}}\right)=\frac{1}{\mathrm{~h}}\left[\sum_{\mathrm{i}} \mathrm{n}(\mathrm{R}) \cdot \chi_{\mathrm{IR}(\mathrm{R})} \cdot \chi_{\mathrm{RR}(\mathrm{R})}\right]
$$

I	55	$5 p$	5d	
$\left(5 s^{2} 5 p^{5}\right)$	11	11.11] 1	!	

$\Gamma_{\text {hybrid orbitals }}: 3 \mathrm{~A}_{1}(\mathrm{~s})+\mathrm{B}_{1}(\mathrm{~s})+\mathrm{E}(\mathrm{d})$ [total 6 H.Os are participate to make sigma bond]
$3 \mathrm{~A}_{1}$: Represent Hybrid orbitals is ' S ', Pz and dz 2
B_{1} : Represent Hybrid orbitals is $\mathrm{dx} 2-\mathrm{y} 2$
E : Represent Hybrid orbitals are (Px; Py) and(dxy, dyz)

Possible set of Hybridization (1) Spddp2 OR sp3d2 (2) spddd2 OR spd4

Hybridization schemes for sigma-orbitals : AB_{6} : Octrahedral (SF6)
(a) P (Ground state)
(b) (Excited state)

Table 2: Character table for O_{h} point group

O_{h}	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}\left(=C_{4}^{2}\right)$	i	$6 S_{4}$	$8 S_{6}$	$3 \sigma_{h}$	$6 \sigma_{d}$		
$A_{1 g}$	1	1	1	1	1	1	1	1	1	1		
$A_{2 g}$	1	1	-1	-1	1	1	-1	1	1	-1		
E_{g}	2	-1	0	0	2	2	0	-1	2	0		
$T_{1 g}$	3	0	-1	1	-1	3	1	0	-1	-1	$\left(R_{x}, R_{y}, R_{z}\right)$	$\left(2 z^{2}-x^{2}-y^{2}+z^{2}\right.$
$T_{2 g}$	3	0	1	-1	-1	3	-1	0	-1	1	$(x z, y z, x y)$	
$A_{1 u}$	1	1	1	1	1	-1	-1	-1	-1	-1		
$A_{2 u}$	1	1	-1	-1	1	-1	1	-1	-1	1		
E_{u}	2	-1	0	0	2	-2	0	1	-2	0		
$T_{1 u}$	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
$T_{2 u}$	3	0	1	-1	-1	-3	1	0	1	-1		

$$
\mathrm{n}\left(\tau_{\mathrm{i}}\right)=\frac{1}{\mathbf{h}}\left[\sum_{\mathrm{i}} \mathrm{n}(\mathrm{R}) \cdot \chi_{\mathrm{IR}(\mathrm{R})} \cdot \chi_{\mathrm{RR}(\mathrm{R})}\right]
$$

$\Gamma_{\text {hybrid orbitals: }} \mathrm{A}_{1 \mathrm{~g}}(\mathrm{~s})+\mathrm{T}_{1 \mathrm{u}}(\mathrm{t})+\mathrm{Eg}(\mathrm{d})$ [total 6 H.Os are participate to make sigma bond]
$\mathrm{A}_{1 \mathrm{~g}}$: Represent Hybrid orbitals is ' S '
$\mathrm{T}_{1 \mathrm{u}}$: Represent Hybrid orbitals is $\mathrm{Px}, \mathrm{Py}, \mathrm{Pz}$
E_{g} : Represent Hybrid orbitals are ($\mathrm{dx} 2-\mathrm{y} 2, \mathrm{dz} 2$)

Possible set of Hybridization (1) Sp3d2

Hybridization schemes for pi-orbitals :

AB_{3} : planar triangle (BF3)
$\Gamma_{\text {Pi-orbitals: }}: A_{2}{ }^{\prime \prime}(s)+E^{\prime \prime}(d)$
[total 3 H.Os are participate to make Pi bond]
$\mathrm{A}_{2}{ }_{2}$: Represent H.O is Pz
E" : Represent H.O are dxy \& dyz

$\mathrm{D}_{3} \mathrm{~h}$		E	$2 \mathrm{C}_{3}$	$3 C_{2}^{\prime}$	σ_{h}	2	$\mathrm{S}_{3} \quad 3 \mathrm{o}_{\mathrm{v}}$	
$\Gamma_{\text {RR }}$		3	0	-1	-3	0	01	
$\mathrm{D}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}{ }^{\prime}$	$\sigma_{\text {h }}$	$2 \mathrm{~S}_{3}$	$3 \sigma_{v}$		
$\mathrm{A}_{1}{ }^{\prime}$	1	1	1		1	1		$x^{2}+y^{2}, z^{2}$
$\mathrm{A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1	R_{z}	
E^{\prime}	2	-1	0	2	-1	0	(x, y)	$\left(x^{2}-y^{2}, x y\right)$
$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1		
$\mathrm{A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
$E^{\prime \prime}$	2	-1	0	-2	1	0	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{v}}\right)$	($x z, y z$)

Hybridization schemes for pi-orbitals: AB_{6} : Octahedral (SF6)

$\Gamma_{\text {Pi -orbitals }}: T_{1 g}(t)+T_{2 g}(t)+T_{1 u}(t)+T_{2 u}(t)$
[total $12 \mathrm{H} . \mathrm{Os}$ are participate to make Pi bond]

Oh	E	8 C 3	6 C 2	6 C 4	3 C 2	i	6 S 4	8 S 6	3oh	6od
Γ_{Pi}	12	0	0	0	-4	0	0	0	0	0

$$
\Gamma_{\mathrm{Pi} \text {-orbitals }}: \mathrm{T}_{1 \mathrm{~g}}(\mathrm{t})+\mathrm{T}_{2 \mathrm{~g}}(\mathrm{t})+\mathrm{T}_{1 \mathrm{u}}(\mathrm{t})+\mathrm{T}_{2 \mathrm{u}}(\mathrm{t})
$$

[total $12 \mathrm{H} . \mathrm{Os}$ are participate to make Pi bond]

Table 2: Character table for O_{h} point group

O_{h}	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}\left(=C_{4}^{2}\right)$	i	$6 S_{4}$	$8 S_{6}$	$3 \sigma_{h}$	$6 \sigma_{d}$		
$A_{1 g}$	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}+z^{2}$
$A_{2 g}$	1	1	-1	-1	1	1	-1	1	1	-1		
E_{g}	2	-1	0	0	2	2	0	-1	2	0		$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$
$T_{1 g}$	3	0	-1	1	-1	3	1	0	-1	-1	$\left(R_{x}, R_{y}, R_{z}\right)$	
$T_{2 g}$	3	0	1	-1	-1	3	-1	0	-1	1	$(x z, y z, x y)$	
$A_{1 u}$	1	1	1	1	1	-1	-1	-1	-1	-1		
$A_{2 u}$	1	1	-1	-1	1	-1	1	-1	-1	1		
E_{u}	2	-1	0	0	2	-2	0	1	-2	0		
$T_{1 u}$	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
$T_{2 u}$	3	0	1	-1	-1	-3	1	0	1	-1		

Direct Product

$C_{4 v}$ $(4 m m)$	E	$2 C_{4}$	C_{2}	$2 \sigma_{v}$	$2 \sigma_{\mathrm{d}}$
A_{1}	1	1	1	1	1
$\mathrm{~A}_{2}$	1	1	1	-1	-1
$\mathrm{~B}_{1}$	1	-1	1	1	-1
$\mathrm{~B}_{2}$	1	-1	1	-1	1
E	2	0	-2	0	0

1. The direct product of any representation with the totally symmetric (A1) is the representation itself.

$$
\mathrm{A} 1 \times \mathrm{A} 2=\mathrm{A} 2 \quad \mathrm{~A} 1 \times \mathrm{B} 2=\mathrm{B} 2 \quad \mathrm{~A} 1 \times \mathrm{E}=\mathrm{E}
$$

$\mathbf{C 4 v}$	\mathbf{E}	$2 \mathbf{C 4}$	C2	2 Ov' $^{\prime}$	2 ov'
A1	1	1	1	1	1
A2	1	1	1	-1	-1
A2	1	1	1	-1	-1

2. The direct product of non -degenerate representation (A, B) is a non- degenerate representation also.

$$
B 1 \times B 2=A 2 \quad B 1 \times A 2=B 2 \quad B 2 \times A 2=B 1
$$

C4v	E	$2 C 4$	$C 2$	$2 \sigma v^{\prime}$	$20 v^{\prime \prime}$
B1	1	-1	1	1	-1
B2	1	-1	1	-1	1
A2	1	1	1	-1	-1

$C_{4 v}$ $(4 m m)$	E	$2 C_{4}$	C_{2}	$2 \sigma_{v}$	$2 \sigma_{\mathrm{d}}$
A_{1}	1	1	1	1	1
$\mathrm{~A}_{2}$	1	1	1	-1	-1
$\mathrm{~B}_{1}$	1	-1	1	1	-1
$\mathrm{~B}_{2}$	1	-1	1	-1	1
E	2	0	-2	0	0

3. The direct product of non-degenerate representation (A, B) and degenerate (E, T) representation is a degenerate representation.

$$
\mathrm{B} 1 \times \mathrm{E}=\mathrm{E} \quad \mathrm{~A} 2 \times \mathrm{E}=\mathrm{E}
$$

C4v	E	2 C4	C2	$2 \sigma v^{\prime}$	$2 \sigma v^{\prime \prime}$
B1	1	-1	1	1	-1
E	2	0	-2	0	0
E	2	0	-2	0	0

4. The direct product of non- degenerate representation (A, B) with itself is a totally symmetric representation.

$$
\mathrm{B} 1 \times \mathrm{B} 1=\mathrm{A} 1 \quad \mathrm{~B} 2 \times \mathrm{B} 2=\mathrm{A} 1 \quad \mathrm{~A} 2 \times \mathrm{A} 2=\mathrm{A} 1
$$

C4v	\mathbf{E}	2 C4	C2	$2 \sigma \mathbf{v}^{\prime}$	$2 \sigma \mathbf{v}^{\prime \prime}$
B1	1	-1	1	1	-1
B1	1	-1	1	1	-1
Γ red	1	1	1	1	1

5. The direct product of degenerate representation (E, T) is a reducible representation. $E \times E=\Gamma$ reducible

C4v	E	2 C4	C2	$2 \sigma v^{\prime}$	$2 \sigma v^{\prime \prime}$
E	2	0	-2	0	0
E	2	0	-2	0	0
Γ red	4	0	4	0	0

Using reduction formula, Γ red $=\mathrm{A} 1+\mathrm{A} 2+\mathrm{B} 1+\mathrm{B} 2$

Direct Product table for XeOF4 (C4v Point Group)

C4v	A1	A2	B1	B2	E
A1	A1	A2	B1	B2	E
A2	A2	A1	B2	B1	E
B1	B1	B2	A1	A2	E
B2	B2	B1	A2	A1	E
E	E	E	E	E	A1+A2+B1+B2

Hint for Direct Products:

$$
\begin{array}{l|l}
A \times A=A & 1 \times 1=1 \\
B \times B=A & 2 \times 2=1 \\
A \times B=B & 1 \times 2=2 \\
\hline g \times g=g & \prime \times{ }^{\prime}=' \\
u \times u=g & \prime \times{ }^{\prime \prime}=' \\
g \times u=u & \prime \times{ }^{\prime \prime}={ }^{\prime} \\
\hline
\end{array}
$$

Direct Products 2

For $C_{2}, C_{3}, C_{6}, D_{3}, D_{6}, C_{2 \mathrm{k}}, C_{3 \mathrm{k}}, C_{6 \mathrm{v}}, C_{2 \mathrm{~h}}, C_{3 \mathrm{~h}}, C_{6 \mathrm{~h}}, D_{3 \mathrm{~h}}, D_{6 \mathrm{~h}}, D_{3 \mathrm{~s}}, S_{6}$

	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	E_{1}	E_{2}
$\mathrm{~A}_{1}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	E_{1}	E_{2}
$\mathrm{~A}_{2}$		$\mathrm{~A}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	E_{1}	E_{2}
$\mathrm{~B}_{1}$			$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	E_{2}	E_{1}
$\mathrm{~B}_{2}$				$\mathrm{~A}_{1}$	E_{2}	E_{1}
E_{1}					$\mathrm{~A}_{1}+\left[\mathrm{A}_{2}\right]+\mathrm{E}_{2}$	$\mathrm{~B}_{1}+\mathrm{B}_{2}+\mathrm{E}_{1}$
E_{2}						$\mathrm{~A}_{1}+\left[\mathrm{A}_{2}\right]+\mathrm{E}_{2}$

